Wave loads on a stationary floating bottomless cylindrical body with finite wall thickness

Abstract This paper aims at presenting a method for solving the linearised diffraction problem of the interaction between regular sinusoidal, small amplitude incident waves and a bottomless cylindrical floating body with a vertical symmetry axis and finite wall thickness, through the idealisation of the flow field around the structure using ring elements. The horizontal and vertical excitation forces, the rolling moment, the resulting wave motion inside the cylinder, as well as the pressure distribution on the wetted surface of the structure are obtained by solving the diffraction boundary-value problem through the implementation of the Galerkin method. The analytical predictions are compared with other analytical results and pertinent experimental data. Finally, the influence of the wall thickness on the wave loads and the fluid motion inside the pond is examined.