Direct Tip-Sample Force Estimation for High-Speed Dynamic Mode Atomic Force Microscopy
暂无分享,去创建一个
S. O. R. Moheimani | Kaushik Mahata | Michael G. Ruppert | Kai S. Karvinen | K. Karvinen | S. Moheimani | K. Mahata
[1] L. Guvenc,et al. Robust Repetitive Controller for Fast AFM Imaging , 2011, IEEE Transactions on Nanotechnology.
[2] Srinivasa M. Salapaka,et al. A robust control based solution to the sample‐profile estimation problem in fast atomic force microscopy , 2005 .
[3] Georg Schitter,et al. State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy , 2004 .
[4] Toshio Ando,et al. High-speed atomic force microscopy coming of age , 2012, Nanotechnology.
[5] Hideki Kandori,et al. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. , 2010, Nature nanotechnology.
[6] Hemantha K. Wickramasinghe,et al. Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .
[7] S. O. Reza Moheimani,et al. Piezoelectric Transducers for Vibration Control and Damping , 2006 .
[8] Murti V. Salapaka,et al. A Review of the Systems Approach to the Analysis of Dynamic-Mode Atomic Force Microscopy , 2007, IEEE Transactions on Control Systems Technology.
[9] Chia-Hsiang Menq,et al. Direct tip-sample interaction force control for the dynamic mode atomic force microscopy , 2006 .
[10] S O R Moheimani,et al. A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy. , 2014, The Review of scientific instruments.
[11] Toshio Ando,et al. Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.
[12] Ricardo Garcia,et al. Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .
[13] S. O. Reza Moheimani,et al. Control Techniques for Increasing the Scan Speed and Minimizing Image Artifacts in Tapping-Mode Atomic Force Microscopy: Toward Video-Rate Nanoscale Imaging , 2013, IEEE Control Systems.
[14] Murti V. Salapaka,et al. Harnessing the transient signals in atomic force microscopy , 2005 .
[15] S. O. Reza Moheimani,et al. Reducing the effect of truncation error in spatial and pointwise models of resonant systems with damping , 2004 .
[16] Murti V. Salapaka,et al. Harmonic and power balance tools for tapping-mode atomic force microscope , 2001 .
[17] G. Schitter,et al. Field Programmable Analog Array (FPAA) based control of an Atomic Force Microscope , 2008, 2008 American Control Conference.
[18] Murti V. Salapaka,et al. Robust control approach to atomic force microscopy , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[19] Murti V. Salapaka,et al. Transient-signal-based sample-detection in atomic force microscopy , 2003 .
[20] Murti V. Salapaka,et al. Real time reduction of probe-loss using switching gain controller for high speed atomic force microscopy. , 2009, The Review of scientific instruments.
[21] Paul K. Hansma,et al. Studies of vibrating atomic force microscope cantilevers in liquid , 1996 .
[22] Hiroyuki Noji,et al. High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F1-ATPase , 2011, Science.
[23] S. O. R. Moheimani,et al. Modulated–demodulated control: Q control of an AFM microcantilever , 2014 .
[24] Gerber,et al. Atomic Force Microscope , 2020, Definitions.
[25] Santosh Devasia,et al. A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.
[26] S. O. R. Moheimani,et al. $Q$ Control of an Atomic Force Microscope Microcantilever: A Sensorless Approach , 2011, Journal of Microelectromechanical Systems.
[27] V. Elings,et al. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .