Direct Tip-Sample Force Estimation for High-Speed Dynamic Mode Atomic Force Microscopy

We present new insights into the modeling of the microcantilever in dynamic mode atomic force microscopy and outline a novel high-bandwidth tip-sample force estimation technique for the development of high-bandwidth z-axis control. Fundamental to the proposed technique is the assumption that in tapping mode atomic force microscopy, the tip-sample force takes the form of an impulse train. Formulating the estimation problem as a Kalman filter, the tip-sample force is estimated directly; thus, potentially enabling high-bandwidth z-axis control by eliminating the dependence of the control technique on microcantilever dynamics and the amplitude demodulation technique. Application of this technique requires accurate knowledge of the models of the microcantilever; a novel identification method is proposed. Experimental data are used in an offline analysis for verification.

[1]  L. Guvenc,et al.  Robust Repetitive Controller for Fast AFM Imaging , 2011, IEEE Transactions on Nanotechnology.

[2]  Srinivasa M. Salapaka,et al.  A robust control based solution to the sample‐profile estimation problem in fast atomic force microscopy , 2005 .

[3]  Georg Schitter,et al.  State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy , 2004 .

[4]  Toshio Ando,et al.  High-speed atomic force microscopy coming of age , 2012, Nanotechnology.

[5]  Hideki Kandori,et al.  High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. , 2010, Nature nanotechnology.

[6]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[7]  S. O. Reza Moheimani,et al.  Piezoelectric Transducers for Vibration Control and Damping , 2006 .

[8]  Murti V. Salapaka,et al.  A Review of the Systems Approach to the Analysis of Dynamic-Mode Atomic Force Microscopy , 2007, IEEE Transactions on Control Systems Technology.

[9]  Chia-Hsiang Menq,et al.  Direct tip-sample interaction force control for the dynamic mode atomic force microscopy , 2006 .

[10]  S O R Moheimani,et al.  A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy. , 2014, The Review of scientific instruments.

[11]  Toshio Ando,et al.  Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.

[12]  Ricardo Garcia,et al.  Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .

[13]  S. O. Reza Moheimani,et al.  Control Techniques for Increasing the Scan Speed and Minimizing Image Artifacts in Tapping-Mode Atomic Force Microscopy: Toward Video-Rate Nanoscale Imaging , 2013, IEEE Control Systems.

[14]  Murti V. Salapaka,et al.  Harnessing the transient signals in atomic force microscopy , 2005 .

[15]  S. O. Reza Moheimani,et al.  Reducing the effect of truncation error in spatial and pointwise models of resonant systems with damping , 2004 .

[16]  Murti V. Salapaka,et al.  Harmonic and power balance tools for tapping-mode atomic force microscope , 2001 .

[17]  G. Schitter,et al.  Field Programmable Analog Array (FPAA) based control of an Atomic Force Microscope , 2008, 2008 American Control Conference.

[18]  Murti V. Salapaka,et al.  Robust control approach to atomic force microscopy , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[19]  Murti V. Salapaka,et al.  Transient-signal-based sample-detection in atomic force microscopy , 2003 .

[20]  Murti V. Salapaka,et al.  Real time reduction of probe-loss using switching gain controller for high speed atomic force microscopy. , 2009, The Review of scientific instruments.

[21]  Paul K. Hansma,et al.  Studies of vibrating atomic force microscope cantilevers in liquid , 1996 .

[22]  Hiroyuki Noji,et al.  High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F1-ATPase , 2011, Science.

[23]  S. O. R. Moheimani,et al.  Modulated–demodulated control: Q control of an AFM microcantilever , 2014 .

[24]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[25]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[26]  S. O. R. Moheimani,et al.  $Q$ Control of an Atomic Force Microscope Microcantilever: A Sensorless Approach , 2011, Journal of Microelectromechanical Systems.

[27]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .