On the coevolution of Ediacaran oceans and animals

Fe speciation and S-isotope of pyrite data from the terminal Proterozoic Sheepbed Formation in Canada and Doushantuo Formation in China reveal that ocean deep waters were anoxic after the global glaciations (snowball Earth) ending 635 million years ago, but that marine sulfate concentrations and inferentially atmospheric oxygen levels were higher than before the glaciations. This supports a long-postulated link between oxygen levels and the emergence of eumetazoa. Subsequent ventilation of the deep ocean, inferred from shifts in Fe speciation in Newfoundland (previously published data) and western Canada (this report), paved the way for Ediacaran macrobiota to colonize the deep seafloors.

[1]  H. Strauss The Isotopic Composition of Precambrian Sulphides—Seawater Chemistry and Biological Evolution , 2009 .

[2]  G. Halverson,et al.  Ediacaran growth of the marine sulfate reservoir , 2007 .

[3]  Maoyan Zhu,et al.  Integrated Ediacaran (Sinian) chronostratigraphy of South China , 2007 .

[4]  A. Knoll,et al.  Doushantuo embryos preserved inside diapause egg cysts , 2007, Nature.

[5]  S. Xiao,et al.  Ediacaran δ13C chemostratigraphy of South China , 2007 .

[6]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[7]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[8]  T. Lyons,et al.  A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins , 2006 .

[9]  J. Grotzinger,et al.  Constraining the timing of basal metazoan radiation using molecular biomarkers and U-Pb isotope dating , 2006 .

[10]  M. Arthur,et al.  Sulfur cycling in the aftermath of a 635-Ma snowball glaciation: Evidence for a syn-glacial sulfidic deep ocean , 2006 .

[11]  P. Allen,et al.  50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean , 2006 .

[12]  A. Knoll,et al.  The Ediacaran Period: A New Addition to the Geologic Time Scale , 2006 .

[13]  G. Halverson A Neoproterozoic Chronology , 2006 .

[14]  D. Bottjer,et al.  Evolutionary Paleoecology of Ediacaran Benthic Marine Animals , 2006 .

[15]  Linda C. Kah,et al.  Active Microbial Sulfur Disproportionation in the Mesoproterozoic , 2005, Science.

[16]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[17]  T. Lyons,et al.  Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution , 2005 .

[18]  S. Xiao,et al.  A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Seyfried,et al.  Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers [rapid communication] , 2005 .

[20]  H. Strauss,et al.  Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution , 2005 .

[21]  G. Narbonne THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their Ecosystems , 2005 .

[22]  Wei Wang,et al.  U-Pb Ages from the Neoproterozoic Doushantuo Formation, China , 2005, Science.

[23]  M. Arthur,et al.  Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite , 2005 .

[24]  Linda C. Kah,et al.  Low marine sulphate and protracted oxygenation of the Proterozoic biosphere , 2004, Nature.

[25]  D. Canfield,et al.  The transition to a sulphidic ocean ∼ 1.84 billion years ago , 2004, Nature.

[26]  R. Dalrymple,et al.  A sedimentary prelude to Marinoan glaciation, Cryogenian (Middle Neoproterozoic) Keele Formation, Mackenzie Mountains, northwestern Canada , 2004 .

[27]  E. Davidson,et al.  Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian , 2004, Science.

[28]  B. Jørgensen,et al.  Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments , 2004 .

[29]  Yanan Shen,et al.  The antiquity of microbial sulfate reduction , 2004 .

[30]  D. Wood,et al.  Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland , 2003 .

[31]  Yanan Shen,et al.  Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin , 2003, Nature.

[32]  J. Grotzinger,et al.  Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoan , 2003 .

[33]  M. Fedonkin The origin of the Metazoa in the light of the Proterozoic fossil record , 2003 .

[34]  J. Gehling,et al.  Life after snowball: The oldest complex Ediacaran fossils , 2003 .

[35]  A. J. Kaufman,et al.  The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? , 2002 .

[36]  D. Schrag,et al.  The snowball Earth hypothesis: testing the limits of global change , 2002 .

[37]  A. Knoll,et al.  Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia , 2002 .

[38]  T. K. Kyser,et al.  Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown , 2001 .

[39]  C. Heip,et al.  Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea , 2001 .

[40]  R. Raiswell,et al.  An Indicator of Water-Column Anoxia: Resolution of Biofacies Variations in the Kimmeridge Clay (Upper Jurassic, U.K.) , 2001 .

[41]  A. Knoll,et al.  Eumetazoan fossils in terminal proterozoic phosphorites? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Knoll,et al.  PHOSPHATIZED ANIMAL EMBRYOS FROM THE NEOPROTEROZOIC DOUSHANTUO FORMATION AT WENG'AN, GUIZHOU, SOUTH CHINA , 2000 .

[43]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[44]  M. Walter,et al.  Neoproterozoic sulfur-isotope variation in Australia and global implications , 2000 .

[45]  S. Carroll,et al.  Early animal evolution: emerging views from comparative biology and geology. , 1999, Science.

[46]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[47]  D. Canfield,et al.  Sources of iron for pyrite formation in marine sediments , 1998 .

[48]  Chen,et al.  Precambrian sponges with cellular structures , 1998, Science.

[49]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[50]  H. Hofmann,et al.  New microfossils from the neoproterozoic (Sinian) Doushantuo Formation, Wengan, Guizhou Province, southwestern China , 1998 .

[51]  M. Fedonkin,et al.  The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism , 1997, Nature.

[52]  A. J. Kaufman,et al.  Isotopes, ice ages, and terminal Proterozoic earth history. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Dalrymple,et al.  Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic, Windermere Supergroup), Mackenzie Mountains, N.W.T. , 1996 .

[54]  J. Gehling,et al.  Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia , 1996, Journal of Paleontology.

[55]  J. Hayes,et al.  Terminal Proterozoic reorganization of biogeochemical cycles , 1995, Nature.

[56]  J. D. Aitken,et al.  Neoproterozoic of the Mackenzie Mountains, northwestern Canada , 1995 .

[57]  A. J. Kaufman,et al.  Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. , 1994, Geological Society of America bulletin.

[58]  G. Narbonne New Ediacaran fossils from the Mackenzie Mountains, northwestern Canada , 1994, Journal of Paleontology.

[59]  S. Burns,et al.  Carbon isotopic record of the Latest Proterozoic from Oman , 1993 .

[60]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[61]  J. D. Aitken The Ice Brook Formation and post-Rapitan, late Proterozoic glaciation, Mackenzie Mountains, Northwest Territories , 1991 .

[62]  J. D. Aitken,et al.  Ediacaran remains from intertillite beds in northwestern Canada , 1990 .

[63]  J. D. Aitken,et al.  Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwestern Canada , 1990 .

[64]  J. D. Aitken Uppermost Proterozoic formations in central Mackenzie Mountains, Northwest Territories , 1989 .

[65]  J. Graham Ecological and Evolutionary Aspects of Integumentary Respiration: Body Size, Diffusion, and the Invertebrata , 1988 .

[66]  A. J. Kaufman,et al.  Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland , 1986, Nature.

[67]  Sun Weiguo Late precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. , 1986 .

[68]  B. Runnegar Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit , 1982 .

[69]  P. Cloud A working model of the primitive Earth , 1972 .

[70]  K. Towe Oxygen-collagen priority and the early metazoan fossil record. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[71]  L. V. Berkner,et al.  On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere , 1965 .

[72]  W. B. Harland,et al.  The Great Infra-Cambrian Ice Age , 1964 .

[73]  J. R. Nursall,et al.  Oxygen as a Prerequisite to the Origin of the Metazoa , 1959, Nature.