Information flow and maximum entropy measures for 1-D maps

Abstract The invariant measures of maximal metric entropy are constructed explicitly for some maps of the interval, by iterating the maps backward. The construction illustrates in a particularly clear way the information flow in simple systems, as well as recently conjectured relationships between dimensions of invariant measures, Lyapunov exponents, and entropies. maps, it is conjectured that the natural measure is the invariant measure with strongest mixing.