Information flow and maximum entropy measures for 1-D maps
暂无分享,去创建一个
[1] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[2] Siegfried Grossmann,et al. Correlations and spectra of periodic chaos generated by the logistic parabola , 1981 .
[3] James A. Yorke,et al. Expanding maps on sets which are almost invariant. Decay and chaos , 1979 .
[4] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[5] James P. Crutchfield,et al. Computing the topological entropy of maps , 1983 .
[6] Robert M. May,et al. Simple mathematical models with very complicated dynamics , 1976, Nature.
[7] N. Packard,et al. Symbolic dynamics of one-dimensional maps: Entropies, finite precision, and noise , 1982 .
[8] P. Billingsley,et al. Ergodic theory and information , 1966 .
[9] D. Ruelle,et al. The Ergodic Theory of Axiom A Flows. , 1975 .
[10] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[11] James A. Yorke,et al. Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model , 1979 .
[12] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .