Evaluation for sintering of electrocatalysts and its effect on voltage drops in high-temperature proton exchange membrane fuel cells (HT-PEMFC)

Abstract Durability performance such as sintering and voltage drops of HT-PEMFC was theoretically evaluated under non-humid conditions at 150 °C, 170 °C and 190 °C. The quantum chemical molecular dynamics showed that the affinity of the platinum (Pt) electrocatalysts with carbon support decreased with increasing temperature. The degree of agglomeration of electrocatalysts over time simulated by three-dimensional kinetic Monte Carlo method was compared and quantitatively agreed with experimentally measured Transmission Electron Microscopy (TEM) results. Agglomeration of electrocatalysts due to the sintering caused losses of electrochemically active surface area, and found to be occurred more severe as temperature increased. Decreased rate of the proton conductivity due to the evaporation of phosphoric acid affected voltage drops as temperature increased. A theoretical breakdown of the voltage drops indicated that the voltage drops that occurred during the first several hundreds of hours and those occurring for the latter stage were due to different effects.

[1]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[2]  Norman Munroe,et al.  Mathematical model of a PEMFC using a PBI membrane , 2006 .

[3]  P. Cañizares,et al.  PBI-based polymer electrolyte membranes fuel cells: Temperature effects on cell performance and catalyst stability , 2007 .

[4]  Xianguo Li,et al.  Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes , 2011 .

[5]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[6]  Partha P. Mukherjee,et al.  Direct numerical simulation (DNS) modeling of PEFC electrodes: Part I. Regular microstructure , 2006 .

[7]  Zhenyu Liu,et al.  Study of the oxygen reduction reaction (ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at elevated temperature and low relative humidity , 2006 .

[8]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[9]  J.A.S. Bett,et al.  Crystallite growth of platinum dispersed on graphitized carbon black , 1974 .

[10]  J. Newman,et al.  Mass Transport in Gas‐Diffusion Electrodes: A Diagnostic Tool for Fuel‐Cell Cathodes , 1998 .

[11]  E. Yeager,et al.  Oxygen Reduction on Platinum in 85% Orthophosphoric Acid , 1979 .

[12]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[13]  David P. Wilkinson,et al.  High temperature PEM fuel cells , 2006 .

[14]  Manuel A. Kanter,et al.  Diffusion of Carbon Atoms in Natural Graphite Crystals , 1957 .

[15]  Edward F. Holby,et al.  Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells , 2007 .

[16]  B. Yi,et al.  Two dimensional modeling study of PBI/H3PO4 high temperature PEMFCs based on electrochemical methods , 2006 .

[17]  Raghunathan Rengaswamy,et al.  Characterization and fault diagnosis of PAFC cathode by EIS technique and a novel mathematical model approach , 2006 .

[18]  Norman Munroe,et al.  Three dimensional modeling of high temperature PEM fuel cells , 2006 .

[19]  T. Lim,et al.  Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer , 2007 .

[20]  Tae-won Song,et al.  Transient response of high temperature PEM fuel cell , 2008 .

[21]  Bernard P. Boudreau,et al.  The diffusive tortuosity of fine-grained unlithified sediments , 1996 .

[22]  Frano Barbir,et al.  PEM Fuel Cells: Theory and Practice , 2012 .

[23]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .

[24]  S. Srinivasan,et al.  Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes , 1998 .

[25]  G. Yin,et al.  Performance analysis of the ordered and the conventional catalyst layers in proton exchange membrane fuel cells , 2006 .

[26]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[27]  Randall Gemmen,et al.  Degradation measurement and analysis for cells and stacks , 2008 .

[28]  Jingwei Hu,et al.  Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis , 2006 .

[29]  M. Mamlouk,et al.  A Non‐isothermal Model of a Laboratory Intermediate Temperature Fuel Cell Using PBI Doped Phosphoric Acid Membranes , 2010 .

[30]  Kui Jiao,et al.  A Three‐Dimensional Non‐isothermal Model of High Temperature Proton Exchange Membrane Fuel Cells with Phosphoric Acid Doped Polybenzimidazole Membranes , 2010 .

[31]  Xianguo Li,et al.  Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell , 1999 .

[32]  Yoshito Nakashima,et al.  Mathematica Programs for the Analysis of Three-Dimensional Pore Connectivity and Anisotropic Tortuosity of Porous Rocks using X-ray Computed Tomography Image Data , 2007 .

[33]  Zhigang Shao,et al.  The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test , 2007 .

[34]  Jingwei Hu,et al.  Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test , 2007 .

[35]  S. Shimpalee,et al.  A study of water adsorption and desorption by a PBI-H3PO4 membrane electrode assembly , 2010 .

[36]  Alexander Wokaun,et al.  Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC , 2008 .

[37]  P. Cañizares,et al.  Study of the Catalytic Layer in Polybenzimidazole‐based High Temperature PEMFC: Effect of Platinum Content on the Carbon Support , 2010 .

[38]  Ronghuan He,et al.  Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells , 2007 .

[39]  M. Williams,et al.  Exergetic Efficiency Rate of Change and Fuel Cell Degradation , 2011 .

[40]  Z. Fishman,et al.  Microscale Tomography Investigations of Heterogeneous Porosity Distributions of PEMFC GDLs , 2010 .

[41]  D. I. MacDonald,et al.  Density, electrical conductivity, and vapor pressure of concentrated phosphoric acid , 1969 .

[42]  M. Koyama,et al.  Development of the overpotential simulator for polymer electrolyte fuel cells and application for optimization of cathode structure , 2008 .

[43]  Yanghua Tang,et al.  Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 °C , 2007 .

[44]  Ernest Yeager,et al.  Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid , 1993 .

[45]  C. Del Carpio,et al.  COMPUTATIONAL CHEMISTRY FOR INDUSTRIAL INNOVATION , 2006 .

[46]  Jie Peng,et al.  Numerical simulation of proton exchange membrane fuel cells at high operating temperature , 2006 .

[47]  L. V. Woodcock Isothermal molecular dynamics calculations for liquid salts , 1971 .

[48]  A. Appleby Evolution and reduction of oxygen on oxidized platinum in 85% orthophosphoric acid , 1970 .

[49]  E. U. Ubong,et al.  Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell , 2009 .

[50]  N. Giordano,et al.  Electrochemical corrosion behavior of carbon black in phosphoric acid , 1988 .

[51]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[52]  Keith Scott,et al.  A dynamic non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped ph , 2010 .

[53]  S. Srinivasan,et al.  Electroreduction of oxygen on reduced platinum in 85% phosphoric acid☆ , 1982 .

[54]  Jingwei Hu,et al.  Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI , 2006 .

[55]  T. Kurz,et al.  Modelling of CO Poisoning and its Dynamics in HTPEM Fuel Cells , 2010 .

[56]  M. Williams,et al.  Multi-scale theoretical study of support effect on sintering dynamics of Pt , 2009 .

[57]  Y. Oono,et al.  Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells , 2009 .

[58]  Datong Song,et al.  Numerical optimization study of the catalyst layer of PEM fuel cell cathode , 2004 .

[59]  P. Stonehart,et al.  Oxygen solubility and diffusivity in hot concentrated H3PO4 , 1974 .

[60]  M. Williams,et al.  Multi-scale Theoretical Study of Sintering Dynamics of Pt for Automotive Catalyst , 2009 .

[61]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[62]  Ronghuan He,et al.  PBI‐Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration , 2004 .

[63]  Rodney L. Borup,et al.  Parametric Study of the Morphological Proprieties of HT-PEMFC Components for Effective Membrane Hydration , 2011 .

[64]  G. Squadrito,et al.  Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance , 2001 .

[65]  Hideyuki Tsuboi,et al.  Ionomer content in the catalyst layer of polymer electrolyte membrane fuel cell (PEMFC): Effects on , 2011 .

[66]  S. Chan,et al.  Numerical analysis of Pt utilization in PEMFC catalyst layer using random cluster model , 2006 .

[67]  S. Chung,et al.  NMR Studies of Mass Transport in High-Acid-Content Fuel Cell Membranes Based on Phosphoric Acid and Polybenzimidazole , 2007 .

[68]  Norman Munroe,et al.  PARAMETRIC MODEL OF AN INTERMEDIATE TEMPERATURE PEMFC , 2006 .

[69]  P. Gómez‐Romero,et al.  Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-benzimidazole) Membranes , 2004 .

[70]  A. Appleby Oxygen Reduction on Oxide‐Free Platinum in 85%Orthophosphoric Acid: Temperature and Impurity Dependence , 1970 .

[71]  R. Benfield,et al.  Structural characterisation of the giant organometallic platinum cluster Pt309(phen*)36O30 using EXAFS , 1999 .

[72]  Jingwei Hu,et al.  500 h Continuous aging life test on PBI/H3PO4 high-temperature PEMFC , 2006 .

[73]  Y. Oono,et al.  Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells , 2010 .