Crisis-Induced intermittency in Hamiltonian Systems

In this paper, we consider compact, invariant sets in Hamiltonian systems in order to extend the concept of crisis to such systems. We focus on crisis-induced intermittency in several systems where two invariant sets merge, obtaining scaling laws for the residence times and for the probability distribution decay as a function of a critical parameter. The connection to hitherto known crisis-induced intermittency in dissipative systems is discussed.

[1]  S. Smale Differentiable dynamical systems , 1967 .

[2]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[3]  J. Yorke,et al.  Final state sensitivity: An obstruction to predictability , 1983 .

[4]  C. L. Siegel On the Integrals of Canonical Systems , 1941 .

[5]  M. Belić,et al.  Transverse effects in photorefractive ring resonators , 1998 .

[6]  Crisis-induced intermittency in a spatially extended nonlinear optical system , 1996 .

[7]  G Turchetti,et al.  Statistics of Poincaré recurrences for maps with integrable and ergodic components. , 2004, Chaos.

[8]  M. Kac On the notion of recurrence in discrete stochastic processes , 1947 .

[9]  J. Milnor On the concept of attractor , 1985 .

[10]  R. Kapral,et al.  Reversible dynamics and the macroscopic rate law for a solvable Kolmogorov system: The three bakers' reaction , 1985 .

[11]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[12]  Kenneth R. Meyer,et al.  Generic Hamiltonian dynamical systems are neither integrable nor ergodic , 1974 .

[13]  A. Chian,et al.  Space plasma dynamics: Alfvén intermittent chaos , 2005 .

[14]  Grebogi,et al.  Critical exponents for crisis-induced intermittency. , 1987, Physical review. A, General physics.

[15]  Arnéodo,et al.  Crisis-induced intermittent bursting in reaction-diffusion chemical systems. , 1992, Physical review letters.

[16]  Alfvén intermittency in space plasmas , 2005 .

[17]  R. Bowen THE EQUIDISTRIBUTION OF CLOSED GEODESICS. , 1972 .

[18]  Abraham C.-L. Chian,et al.  Attractor merging crisis in chaotic business cycles , 2005 .

[19]  Intermittency in low frequency current oscillations in semi-insulating GaAs , 2003 .

[20]  M. Pettini Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics , 2007, 0711.1484.

[21]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[22]  L. Hufnagel,et al.  Can simple renormalization theories describe the trapping of chaotic trajectories in mixed systems? , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  M. Markus,et al.  Intermittency in connected hamiltonian systems , 2003 .

[24]  Carroll,et al.  Chaotic transients and multiple attractors in spin-wave experiments. , 1987, Physical review letters.

[25]  C. Siegel Über die Existenz einer Normalform analytischerHamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung , 1954 .

[26]  P. Glorieux,et al.  Chaotic transients in a CO2 laser with modulated parameters: Critical slowing-down and crisis-induced intermittency , 1988 .

[27]  Ji-lin Zhou,et al.  The Role of Hyperbolic Invariant Sets in Stickiness Effects , 2005 .

[28]  Mario Markus,et al.  Multipeaked probability distributions of recurrence times. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Sandro Vaienti,et al.  Statistics of Return Times:¶A General Framework and New Applications , 1999 .

[30]  J. H. Misguich,et al.  Motion in a stochastic layer described by symbolic dynamics. , 1998, Chaos.

[31]  Celso Grebogi,et al.  Bifurcation to chaotic scattering , 1990 .