Symplectic Methods for Separable Hamiltonian Systems

This paper focuses on the solution of separable Hamiltonian systems using explicit symplectic integration methods. Strategies for reducing the effect of cumulative rounding errors are outlined and advantages over a standard formulation are demonstrated. Procedures for automatically choosing appropriate methods are also described.

[1]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[2]  William Kahan,et al.  Composition constants for raising the orders of unconventional schemes for ordinary differential equations , 1997, Math. Comput..

[3]  Robert I. McLachlan,et al.  Composition methods in the presence of small parameters , 1995 .

[4]  Fernando Casas,et al.  Symplectic Integration with Processing: A General Study , 1999, SIAM J. Sci. Comput..

[5]  D. Earn,et al.  Exact numerical studies of Hamiltonian maps: iterating without roundoff error , 1992 .

[6]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[7]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[8]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[9]  Lawrence F. Shampine,et al.  Automatic selection of the initial step size for an ODE solver , 1987 .

[10]  Ernst Hairer,et al.  Variable time step integration with symplectic methods , 1997 .

[11]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[12]  S. Tremaine,et al.  Roundoff error in long-term planetary orbit integrations , 1990 .

[13]  J. Candy,et al.  Symplectic integrators for long-term integrations in celestial mechanics , 1991 .

[14]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[15]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[16]  Robert D. Skeel,et al.  Explicit canonical methods for Hamiltonian systems , 1992 .

[17]  Ander Murua,et al.  On Order Conditions for Partitioned Symplectic Methods , 1997 .

[18]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[19]  S. Blanes,et al.  Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .

[20]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[21]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[22]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[23]  E. Hairer Backward analysis of numerical integrators and symplectic methods , 1994 .

[24]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .