Adaptive Estimation Algorithm for Aircraft Engine Performance Monitoring

In the frame of turbine engine performance monitoring, system identification procedures are often used to adapt a simulation model of the engine to some observed data through a set of so-called health parameters. Doing so, the values of these health parameters are intended to represent the actual health condition of the engine. The Kalman filter has been widely used to achieve the identification procedure in real-time onboard applications. However, to achieve a proper filtering of the measurement noise, the health parameters are often assumed to vary in time relatively slowly, preventing any abrupt accidental events from being tracked effectively. This contribution presents a procedure called adaptive filtering. Based on a covariance-matching method, it is intended to automatically release the health parameters once an accidental event is detected. This enables the Kalman filter to deal with both continuous and abrupt fault conditions.