Causality, renormalizability and ultra-high energy gravitational scattering

The amplitude  ( s , t ) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg–Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift Θ scat ( s ˆ ) , where the single variable s ˆ = Gs / m 2 b d − 2 contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of Θ scat ( s ˆ ) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly discussed.

[1]  G. Shore,et al.  Causality violation, gravitational shockwaves and UV completion , 2015, 1512.04952.

[2]  H. Reall,et al.  Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory , 2015, 1508.05303.

[3]  G. D’Appollonio,et al.  Regge behavior saves string theory from causality violations , 2015, Journal of High Energy Physics.

[4]  J. Maldacena,et al.  Causality constraints on corrections to the graviton three-point coupling , 2014, Journal of High Energy Physics.

[5]  Steven B. Giddings,et al.  The gravitational S-matrix: Erice lectures , 2011, 1105.2036.

[6]  G. Shore,et al.  The effect of gravitational tidal forces on renormalized quantum fields , 2011, 1111.3174.

[7]  G. Shore,et al.  The effect of gravitational tidal forces on vacuum polarization: How to undress a photon , 2010, 1006.0145.

[8]  S. Giddings,et al.  The Gravitational S-matrix , 2009, 0908.0004.

[9]  G. Shore,et al.  The refractive index of curved spacetime II: QED, Penrose limits and black holes , 2009, 0905.0771.

[10]  G. Shore,et al.  The causal structure of QED in curved spacetime: analyticity and the refractive index , 2008, 0806.1019.

[11]  G. Shore,et al.  The refractive index of curved spacetime: The fate of causality in QED , 2007, 0707.2303.

[12]  D. Gross,et al.  Gravitational effects in ultrahigh-energy string scattering , 2007, 0705.1816.

[13]  D. Amati,et al.  Towards an S-matrix description of gravitational collapse , 2007, 0712.1209.

[14]  G. Shore,et al.  Causality and micro-causality in curved spacetime , 2007, 0707.2302.

[15]  G. Shore Superluminality and UV completion , 2007, hep-th/0701185.

[16]  Sebastian Weiss,et al.  Fermi coordinates and Penrose limits , 2006, hep-th/0603109.

[17]  R. Rattazzi,et al.  Causality, analyticity and an IR obstruction to UV completion , 2006, hep-th/0602178.

[18]  G. Veneziano String-theoretic unitary S-matrix at the threshold of black-hole production , 2004, hep-th/0410166.

[19]  G. Shore Constructing Time Machines , 2002, gr-qc/0210048.

[20]  D. Amati,et al.  Effective action and all-order gravitational eikonal at planckian energies , 1993 .

[21]  D. Amati,et al.  Planckian scattering beyond the semiclassical approximation , 1992 .

[22]  D. Amati,et al.  Higher-order gravitational deflection and soft bremsstrahlung in planckian energy superstring collisions , 1990 .

[23]  D. Amati,et al.  Can spacetime be probed below the string size , 1989 .

[24]  D. Gross,et al.  String Theory Beyond the Planck Scale , 1988 .

[25]  V. Ferrari,et al.  Beam-like gravitational waves and their geodesies , 1988 .

[26]  Soldate,et al.  High-energy unitarity of gravitation and strings. , 1988, Physical review. D, Particles and fields.

[27]  D. Amati,et al.  CLASSICAL AND QUANTUM GRAVITY EFFECTS FROM PLANCKIAN ENERGY SUPERSTRING COLLISIONS , 1988 .

[28]  G. Hooft Graviton dominance in ultra-high-energy scattering , 1987 .

[29]  D. Amati,et al.  Superstring collisions at planckian energies , 1987 .

[30]  D. Gross,et al.  The High-Energy Behavior of String Scattering Amplitudes , 1987 .

[31]  I. T. Drummond,et al.  QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons , 1980 .

[32]  R. Penrose Any Space-Time has a Plane Wave as a Limit , 1976 .

[33]  I. Kobzarev,et al.  On the gravitational field of a massless particle , 1974 .