Minimally Dissipative Information Erasure in a Quantum Dot via Thermodynamic Length.

In this Letter, we explore the use of thermodynamic length to improve the performance of experimental protocols. In particular, we implement Landauer erasure on a driven electron level in a semiconductor quantum dot, and compare the standard protocol in which the energy is increased linearly in time with the one coming from geometric optimization. The latter is obtained by choosing a suitable metric structure, whose geodesics correspond to optimal finite-time thermodynamic protocols in the slow driving regime. We show experimentally that geodesic drivings minimize dissipation for slow protocols, with a bigger improvement as one approaches perfect erasure. Moreover, the geometric approach also leads to smaller dissipation even when the time of the protocol becomes comparable with the equilibration timescale of the system, i.e., away from the slow driving regime. Our results also illustrate, in a single-electron device, a fundamental principle of thermodynamic geometry: optimal finite-time thermodynamic protocols are those with constant dissipation rate along the process.

[1]  J. S. Lee,et al.  Speed Limit for a Highly Irreversible Process and Tight Finite-Time Landauer's Bound. , 2022, Physical review letters.

[2]  Adam G. Frim,et al.  Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles. , 2021, Physical review letters.

[3]  O. Dahlsten,et al.  Inverse linear versus exponential scaling of work penalty in finite-time bit reset. , 2021, Physical review. E.

[4]  C. P. Sun,et al.  Minimal energy cost to initialize a bit with tolerable error. , 2021, Physical review. E.

[5]  V. Maisi,et al.  Experimental Verification of the Work Fluctuation-Dissipation Relation for Information-to-Work Conversion. , 2021, Physical review letters.

[6]  T. Van Vu,et al.  Finite-Time Quantum Landauer Principle and Quantum Coherence. , 2021, Physical review letters.

[7]  L. Bellon,et al.  Dynamics of Information Erasure and Extension of Landauer's Bound to Fast Processes. , 2021, Physical review letters.

[8]  David A. Sivak,et al.  Steps minimize dissipation in rapidly driven stochastic systems. , 2021, Physical review. E.

[9]  S. Ciliberto,et al.  Information and Thermodynamics: Fast and Precise Approach to Landauer's Bound in an Underdamped Micromechanical Oscillator. , 2021, Physical review letters.

[10]  H. Miller,et al.  Geometry of Work Fluctuations versus Efficiency in Microscopic Thermal Machines. , 2020, Physical review letters.

[11]  Matteo Scandi,et al.  Geometric Optimisation of Quantum Thermodynamic Processes , 2020, Entropy.

[12]  J. Goold,et al.  Quantum Fluctuations Hinder Finite-Time Information Erasure near the Landauer Limit. , 2020, Physical review letters.

[13]  Sebastian Deffner,et al.  Thermodynamic control —An old paradigm with new applications , 2020, EPL (Europhysics Letters).

[14]  J. Bechhoefer,et al.  Optimal finite-time bit erasure under full control. , 2020, Physical review. E.

[15]  M. Roukes,et al.  Nonequilibrium thermodynamics of erasure with superconducting flux logic , 2019, Physical Review Research.

[16]  Keiji Saito,et al.  Thermodynamic Geometry of Microscopic Heat Engines. , 2019, Physical review letters.

[17]  M. Perarnau-Llobet,et al.  Optimal Cycles for Low-Dissipation Heat Engines. , 2019, Physical review letters.

[18]  J. Anders,et al.  Quantum work statistics close to equilibrium , 2019, 1911.04306.

[19]  Harry J. D. Miller,et al.  Work Fluctuations in Slow Processes: Quantum Signatures and Optimal Control. , 2019, Physical review letters.

[20]  V. Maisi,et al.  Individually addressable double quantum dots formed with nanowire polytypes and identified by epitaxial markers , 2019, Applied Physics Letters.

[21]  Vittorio Giovannetti,et al.  Optimal Probabilistic Work Extraction beyond the Free Energy Difference with a Single-Electron Device. , 2018, Physical review letters.

[22]  Matteo Scandi,et al.  Thermodynamic length in open quantum systems , 2018, Quantum.

[23]  M. Feng,et al.  Single-Atom Demonstration of the Quantum Landauer Principle. , 2018, Physical review letters.

[24]  Fernando Luis,et al.  Quantum Landauer erasure with a molecular nanomagnet , 2018 .

[25]  S. Ciliberto,et al.  Experiments in Stochastic Thermodynamics: Short History and Perspectives , 2017 .

[26]  K. Dick,et al.  Conduction Band Offset and Polarization Effects in InAs Nanowire Polytype Junctions. , 2017, Nano letters.

[27]  V. Maisi,et al.  Measuring the Degeneracy of Discrete Energy Levels Using a GaAs/AlGaAs Quantum Dot. , 2016, Physical review letters.

[28]  John Bechhoefer,et al.  Erasure without Work in an Asymmetric Double-Well Potential. , 2016, Physical review letters.

[29]  Scott Dhuey,et al.  Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits , 2016, Science Advances.

[30]  K. Dick,et al.  Single-electron transport in InAs nanowire quantum dots formed by crystal phase engineering , 2015, 1512.06887.

[31]  D. O. Soares-Pinto,et al.  Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Paolo Vavassori,et al.  Experimental and theoretical analysis of Landauer erasure in nano-magnetic switches of different sizes , 2016 .

[33]  A. Petrosyan,et al.  Information and thermodynamics: experimental verification of Landauer's Erasure principle , 2015, 1503.06537.

[34]  Yonggun Jun,et al.  High-precision test of Landauer's principle in a feedback trap. , 2014, Physical review letters.

[35]  Sebastian Deffner,et al.  Optimal driving of isothermal processes close to equilibrium. , 2014, The Journal of chemical physics.

[36]  Patrick R. Zulkowski,et al.  Optimal finite-time erasure of a classical bit. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  K. Dick,et al.  A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow. , 2013, Nano letters.

[38]  M. Esposito,et al.  Finite-time erasing of information stored in fermionic bits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  David A. Sivak,et al.  Geometry of thermodynamic control. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[41]  David A. Sivak,et al.  Thermodynamic metrics and optimal paths. , 2012, Physical review letters.

[42]  M. Beck,et al.  Irreversibility on the Level of Single-Electron Tunneling , 2011, 1107.4240.

[43]  J. Pekola,et al.  Vanishing quasiparticle density in a hybrid Al/Cu/Al single-electron transistor , 2011, 1106.1326.

[44]  W. Wegscheider,et al.  Determination of energy scales in few-electron double quantum dots. , 2011, The Review of scientific instruments.

[45]  B. Andresen Current trends in finite-time thermodynamics. , 2011, Angewandte Chemie.

[46]  Paolo Muratore-Ginanneschi,et al.  Optimal protocols and optimal transport in stochastic thermodynamics. , 2010, Physical review letters.

[47]  J. Pekola,et al.  Environmentally activated tunneling events in a hybrid single-electron box , 2010, 1006.0479.

[48]  A. Gossard,et al.  Electron counting in quantum dots , 2009, 0905.4675.

[49]  Gavin E Crooks,et al.  Measuring thermodynamic length. , 2007, Physical review letters.

[50]  L. Vandersypen,et al.  Real-time detection of single-electron tunneling using a quantum point contact , 2004, cond-mat/0407121.

[51]  P. Salamon,et al.  Principles of control thermodynamics , 2001 .

[52]  Berry,et al.  Thermodynamic geometry and the metrics of Weinhold and Gilmore. , 1988, Physical review. A, General physics.

[53]  Bjarne Andresen,et al.  Quasistatic processes as step equilibrations , 1985 .

[54]  Peter Salamon,et al.  Thermodynamic length and dissipated availability , 1983 .

[55]  Bjarne Andresen,et al.  The significance of Weinhold’s length , 1980 .

[56]  B. Andresen,et al.  Minimum entropy production and the optimization of heat engines , 1980 .

[57]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..