Optimal tensile properties of a Manicaria-based biocomposite by the Taguchi method

Abstract Environmental awareness of the global waste problem has driven the development of new green composites made from either renewable or biodegradable materials. Among the variety of available green composites, natural composites based on poly-lactic acid (PLA) have shown noteworthy performance due to their short degradation time after disposal, good strength, and ease of processing by conventional methods. In particular, green composites manufactured with PLA matrix reinforced with Manicaria Saccifera fabric (MF) display mechanical properties that have shown to be very competitive compared with similar materials. In this study, the tensile properties of a green composite of PLA reinforced with MF are optimized by using a Taguchi method approach. The processing parameters, fabric chemical treatment parameters, compression molding parameters, and fiber content are analyzed simultaneously to yield the optimum biocomposite properties. The predicted optimum parameters are experimentally verified. Tensile tests and scanning electron microscope (SEM) analysis are used. Significant improvements on both the tensile strength (114.2%), and the elastic modulus (120.6%) of the biocomposite are achieved.

[1]  J. Móczó,et al.  Biocomposite from polylactic acid and lignocellulosic fibers: structure-property correlations. , 2013, Carbohydrate polymers.

[2]  M. Skrifvars,et al.  Natural fibres as reinforcement in polylactic acid (PLA) composites , 2003 .

[3]  A. Rajulu,et al.  Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites. , 2013, Carbohydrate polymers.

[4]  A. Mohanty,et al.  Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites , 2000 .

[5]  Hao Wang,et al.  Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview , 2012 .

[6]  Yan Li,et al.  Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites , 2010 .

[7]  M. Khan,et al.  Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites , 2012 .

[8]  Edwin Bodros,et al.  Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications , 2007 .

[9]  M. Shibata,et al.  Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric , 2004 .

[10]  W. B. Pedersen,et al.  Biodegradable composites based on l-polylactide and jute fibres , 2003 .

[11]  A. Herrmann,et al.  Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas , 2009 .

[12]  I. Ashcroft,et al.  Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina , 2016 .

[13]  Arlindo Silva,et al.  Green composites: A review of adequate materials for automotive applications , 2013 .

[14]  M. Misra,et al.  Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World , 2002, Renewable Energy.

[15]  Andrzej K. Bledzki,et al.  Mechanical properties of PLA composites with man-made cellulose and abaca fibres , 2009 .

[16]  A. Maranon,et al.  Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric , 2012 .

[17]  M. Gafur,et al.  Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid) composites , 2016 .

[18]  A. Patnaik,et al.  Wear Behavior of Plant Fiber (Pine-Bark) and Cement Kiln Dust-Reinforced Polyester Composites Using Taguchi Experimental Model , 2010 .

[19]  J. Lim,et al.  Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment , 2010 .

[20]  A. Błędzki,et al.  Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – A comparative study to PP , 2010 .

[21]  Shinji Ochi,et al.  Mechanical properties of kenaf fibers and kenaf/PLA composites , 2008 .

[22]  K. Pickering,et al.  Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites , 2011 .

[23]  Manjusri Misra,et al.  Surface modifications of natural fibers and performance of the resulting biocomposites: An overview , 2001 .

[24]  Jörg Müssig,et al.  Impact and tensile properties of PLA/Cordenka and PLA/flax composites , 2008 .

[25]  J. Lim,et al.  Fabrication and Mechanical Properties of Completely Biodegradable Hemp Fiber Reinforced Polylactic Acid Composites , 2007 .

[26]  G. Kiran,et al.  A study on the influence of hot press forming process parameters on mechanical properties of green composites using Taguchi experimental design , 2011 .

[27]  R. P. John,et al.  An overview of the recent developments in polylactide (PLA) research. , 2010, Bioresource technology.

[28]  F. Mantia,et al.  Green composites: A brief review , 2011 .

[29]  A. Satapathy,et al.  A comparative study on erosion characteristics of red mud filled bamboo–epoxy and glass–epoxy composites , 2010 .

[30]  Jörg Müssig,et al.  A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites , 2011 .

[31]  A. Błędzki,et al.  Biocomposites reinforced with natural fibers: 2000–2010 , 2012 .

[32]  Yan Li,et al.  Preparation and properties of short natural fiber reinforced poly(lactic acid) composites , 2009 .

[33]  Kaushik Kumar,et al.  Optimization of Mechanical Properties of Epoxy based Wood Dust Reinforced Green Composite Using Taguchi Method , 2014 .

[34]  Shree Krishna Acharya,et al.  Fabrication-Modelling and Analysis on Tribological Performance of Natural Composites Using Taguchi Approach , 2012 .

[35]  I. Ashcroft,et al.  Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials , 2015 .

[36]  Jung Tae Lee,et al.  Viscoelastic and thermal behavior of woven hemp fiber reinforced poly(lactic acid) composites , 2012 .

[37]  B. Priyono,et al.  On the Tensile Properties of Polylactide (PLA)/Arenga Pinnata “Ijuk” Fibre Composite , 2015 .

[38]  S. Hussain,et al.  MECHANICAL PROPERTIES OF GREEN COCONUT FIBER REINFORCED HDPE POLYMER COMPOSITE , 2011 .

[39]  Kazuya Okubo,et al.  How to improve mechanical properties of polylactic acid with bamboo fibers , 2008 .

[40]  Manjusri Misra,et al.  Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites , 2003 .

[41]  William Y. Fowlkes,et al.  Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development , 1995 .

[42]  R. Scaffaro,et al.  New Polylactic Acid Composites Reinforced with Artichoke Fibers , 2015, Materials.

[43]  Satoshi Kobayashi,et al.  Processing of unidirectional hemp fiber reinforced composites with micro-braiding technique , 2013 .

[44]  Hazizan Md Akil,et al.  Chemical modification of kenaf fibers , 2007 .

[45]  R. Farnood,et al.  Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites , 2014 .

[46]  Inderdeep Singh,et al.  Development and characterization of PLA-based green composites , 2014 .