Food Perception Primes Hepatic ER Homeostasis via Melanocortin-Dependent Control of mTOR Activation

[1]  Marcus Krüger,et al.  Instant Clue: A Software Suite for Interactive Data Visualization and Analysis , 2018, Scientific Reports.

[2]  C. Rabouille,et al.  Modulation of the secretory pathway by amino-acid starvation , 2018, The Journal of cell biology.

[3]  D. Morgan,et al.  Differential contribution of POMC and AgRP neurons to the regulation of regional autonomic nerve activity by leptin , 2017, Molecular metabolism.

[4]  D. Wasserman,et al.  The liver , 2017, Current Biology.

[5]  D. Rader,et al.  mTORC1 stimulates phosphatidylcholine synthesis to promote triglyceride secretion , 2017, The Journal of clinical investigation.

[6]  Kavaljit H. Chhabra,et al.  Reduced renal sympathetic nerve activity contributes to elevated glycosuria and improved glucose tolerance in hypothalamus-specific Pomc knockout mice , 2017, Molecular metabolism.

[7]  J. Brüning,et al.  Neuronal control of peripheral insulin sensitivity and glucose metabolism , 2017, Nature Communications.

[8]  U. Schibler,et al.  Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles , 2017, Cell.

[9]  A. Shin,et al.  Insulin Receptor Signaling in POMC, but Not AgRP, Neurons Controls Adipose Tissue Insulin Action , 2017, Diabetes.

[10]  D. Sabatini,et al.  mTOR Signaling in Growth, Metabolism, and Disease , 2017, Cell.

[11]  H. Sapru,et al.  Stimulation of the hypothalamic arcuate nucleus increases brown adipose tissue nerve activity via hypothalamic paraventricular and dorsomedial nuclei. , 2016, American journal of physiology. Heart and circulatory physiology.

[12]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[13]  Xu Jiang,et al.  Proteomic analysis of mTOR inhibition-mediated phosphorylation changes in ribosomal proteins and eukaryotic translation initiation factors , 2016, Protein & Cell.

[14]  Kalyani V. P. Guntur,et al.  Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning. , 2016, The Journal of clinical investigation.

[15]  Thomas Benzing,et al.  AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue , 2016, Cell.

[16]  A. Freudenthaler,et al.  Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain , 2016, Diabetes.

[17]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[18]  S. Gygi,et al.  S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction , 2015, Science.

[19]  R. Naik Ramesh,et al.  Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales , 2015, eLife.

[20]  J. Betley,et al.  Neurons for hunger and thirst transmit a negative-valence teaching signal , 2015, Nature.

[21]  M. Looso,et al.  Quantitative analysis of the TNF-α-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKβ substrate , 2015, Nature Communications.

[22]  J. Elmquist,et al.  Neural Control of Energy Balance: Translating Circuits to Therapies , 2015, Cell.

[23]  Yen-Chu Lin,et al.  Sensory Detection of Food Rapidly Modulates Arcuate Feeding Circuits , 2015, Cell.

[24]  D. Morgan,et al.  Leptin Receptor Signaling in the Hypothalamus Regulates Hepatic Autonomic Nerve Activity via Phosphatidylinositol 3-Kinase and AMP-Activated Protein Kinase , 2015, The Journal of Neuroscience.

[25]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[26]  J. Hecksher-Sørensen,et al.  The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. , 2014, The Journal of clinical investigation.

[27]  J. Elmquist,et al.  Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. , 2014, Cell metabolism.

[28]  Linh Vong,et al.  Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia , 2014, Nature Neuroscience.

[29]  W. Jia,et al.  Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s–PPARα axis signalling , 2014, Nature Communications.

[30]  M. Krüger,et al.  Global protein expression profiling of zebrafish organs based on in vivo incorporation of stable isotopes. , 2014, Journal of proteome research.

[31]  Rebecca C Taylor,et al.  XBP-1 Is a Cell-Nonautonomous Regulator of Stress Resistance and Longevity , 2013, Cell.

[32]  J. Brüning,et al.  CNS insulin signaling in the control of energy homeostasis and glucose metabolism – from embryo to old age , 2013, Trends in Endocrinology & Metabolism.

[33]  Linh Vong,et al.  Melanocortin 4 Receptors Reciprocally Regulate Sympathetic and Parasympathetic Preganglionic Neurons , 2013, Cell.

[34]  J. Repa,et al.  The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism. , 2013, The Journal of clinical investigation.

[35]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[36]  Jürgen Cox,et al.  1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data , 2012, BMC Bioinformatics.

[37]  R. Kaufman,et al.  IRE1α-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. , 2012, Cell metabolism.

[38]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[39]  Richard J. Lavallee,et al.  Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. , 2012, Journal of proteome research.

[40]  R. Coppari,et al.  Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. , 2012, The Journal of clinical investigation.

[41]  Allan R. Jones,et al.  A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing , 2012, Nature Neuroscience.

[42]  P. Gruppuso,et al.  Phosphoproteomic Profiling of In Vivo Signaling in Liver by the Mammalian Target of Rapamycin Complex 1 (mTORC1) , 2011, PloS one.

[43]  Hui-yu Liu,et al.  Constitutive role for IRE1α-XBP1 signaling pathway in the insulin-mediated hepatic lipogenic program. , 2011, Endocrinology.

[44]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[45]  R. Zechner,et al.  Brain insulin controls adipose tissue lipolysis and lipogenesis. , 2011, Cell metabolism.

[46]  J. Brüning,et al.  CNS leptin and insulin action in the control of energy homeostasis , 2010, Annals of the New York Academy of Sciences.

[47]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[48]  M. Pagliassotti,et al.  Rapamycin inhibits postprandial-mediated X-box-binding protein-1 splicing in rat liver. , 2010, The Journal of nutrition.

[49]  J. Hebebrand,et al.  Sympathetic function in human carriers of melanocortin-4 receptor gene mutations. , 2010, The Journal of clinical endocrinology and metabolism.

[50]  Shijie Li,et al.  Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis , 2010, Proceedings of the National Academy of Sciences.

[51]  F. Gachon,et al.  Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. , 2010, Cell metabolism.

[52]  J. Hoyer,et al.  Modulation of blood pressure by central melanocortinergic pathways. , 2009, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[53]  J. Mauer,et al.  MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. , 2009, Cell metabolism.

[54]  S. O’Rahilly,et al.  Modulation of blood pressure by central melanocortinergic pathways. , 2009, The New England journal of medicine.

[55]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[56]  S. Cooper,et al.  From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis , 2008, Appetite.

[57]  L. Glimcher,et al.  Regulation of Hepatic Lipogenesis by the Transcription Factor XBP1 , 2008, Science.

[58]  Jay Schulkin,et al.  Anticipatory physiological regulation in feeding biology: Cephalic phase responses , 2008, Appetite.

[59]  Richard I. Morimoto,et al.  Adapting Proteostasis for Disease Intervention , 2008, Science.

[60]  B. Lowell,et al.  Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity , 2007, Nature.

[61]  F. Ashcroft,et al.  Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. , 2007, Cell metabolism.

[62]  M. Cowley,et al.  Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. , 2007, Cell metabolism.

[63]  E. Yilmaz,et al.  Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes , 2006, Science.

[64]  R. Cone Studies on the physiological functions of the melanocortin system. , 2006, Endocrine reviews.

[65]  L. Glimcher,et al.  Endoplasmic Reticulum Stress Links Obesity, Insulin Action, and Type 2 Diabetes , 2004, Science.

[66]  K. Mori,et al.  XBP1 , 2004, The Journal of Cell Biology.

[67]  L. Staudt,et al.  XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. , 2004, Immunity.

[68]  B. Lowell,et al.  Leptin Receptor Signaling in POMC Neurons Is Required for Normal Body Weight Homeostasis , 2004, Neuron.

[69]  L. Glimcher,et al.  XBP-1 Regulates a Subset of Endoplasmic Reticulum Resident Chaperone Genes in the Unfolded Protein Response , 2003, Molecular and Cellular Biology.

[70]  A. Mark,et al.  Role of Melanocortin-4 Receptors in Mediating Renal Sympathoactivation to Leptin and Insulin , 2003, The Journal of Neuroscience.

[71]  S. Shibata,et al.  Adrenergic regulation of clock gene expression in mouse liver , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  K. Inoki,et al.  TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling , 2002, Nature Cell Biology.

[73]  M. Low,et al.  Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus , 2001, Nature.

[74]  J. Holst,et al.  The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. , 2001, Diabetes.

[75]  G. P. Smith,et al.  The controls of eating: a shift from nutritional homeostasis to behavioral neuroscience. , 2000, Nutrition.

[76]  C. Kellendonk,et al.  Hepatocyte‐specific expression of Cre recombinase , 2000, Genesis.

[77]  H. Suh,et al.  Differential effects of adrenaline and noradrenaline on the hepatic expression of immediate early genes in mice. , 1998, Journal of autonomic pharmacology.

[78]  R. Pearson,et al.  Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k , 1997, The EMBO journal.

[79]  P. Walter,et al.  A Novel Mechanism for Regulating Activity of a Transcription Factor That Controls the Unfolded Protein Response , 1996, Cell.

[80]  J. Sambrook,et al.  A transmembrane protein with a cdc2+ CDC28 -related kinase activity is required for signaling from the ER to the nucleus , 1993, Cell.

[81]  Peter Walter,et al.  Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase , 1993, Cell.

[82]  S. Woods,et al.  The eating paradox: how we tolerate food. , 1991, Psychological review.

[83]  N. Zeleznik-Le,et al.  A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. , 1990, Science.

[84]  M. Cabanac,et al.  Cephalic postprandial thermogenesis in human subjects , 1989, Physiology & Behavior.

[85]  J. Leblanc,et al.  Role of autonomic nervous system in postprandial thermogenesis in dogs. , 1987, The American journal of physiology.

[86]  Y. Kawai,et al.  Adrenergic Receptors in Human Liver Plasma Membranes: Predominance of β2- and α1-Receptor Subtypes , 1986 .

[87]  M. Moore-Ede,et al.  Physiology of the circadian timing system: predictive versus reactive homeostasis. , 1986, The American journal of physiology.

[88]  M. Feldman,et al.  Role of thought, sight, smell, and taste of food in the cephalic phase of gastric acid secretion in humans. , 1986, Gastroenterology.

[89]  M. Cabanac,et al.  Reduced postprandial heat production with gavage as compared with meal feeding in human subjects. , 1984, The American journal of physiology.

[90]  W. Krone,et al.  Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding. Regulatory significance of long-chain acyl-CoA and cyclic AMP. , 1977, Archives of biochemistry and biophysics.

[91]  A. Chedid,et al.  Diurnal Rhythm in Endoplasmic Reticulum of Rat Liver: Electron Microscopic Study , 1972, Science.