Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids

Abstract ZnO nanofluids have been prepared by dispersing ZnO nanoparticles in the ethylene glycol (EG) and glycerol (G) as the base fluids. Ammonium citrate, as a dispersant, has been used to improve the dispersion of nanoparticles and suppressing formation of particle clusters to obtain stable suspensions. The thermal conductivity of ZnO nanofluids has been measured as a function of the volume fraction and temperature. The thermal conductivity of ZnO/EG and ZnO/G nanofluids increases nonlinearly up to 10.5% and 7.2%, respectively, as the volume fraction of nanoparticles increases up to 3 vol.%. The thermal conductivity of a ZnO nanofluid increases nonlinearly with increasing the temperature at a constant volume fraction of nanoparticles. For the first time, we have measured the viscosity and surface tension of ZnO nanofluids. The viscosity ratio of nanofluids increases with increasing concentration and decreasing the temperature. The surface tension ratio of suspensions containing solid particles increases with increasing the volume fraction of the solid nanoparticles. The experimental data for thermal conductivity and viscosity have been compared with some existing theoretical models.

[1]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[2]  Bo-Jung Chen,et al.  Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study , 2006 .

[3]  Pozhar Structure and dynamics of nanofluids: theory and simulations to calculate viscosity , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[5]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[6]  Harold G. Craighead,et al.  Entropic trapping and sieving of long DNA molecules in a nanofluidic channel , 1999 .

[7]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[8]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[9]  Michael Z Hu,et al.  Transport properties of nanosystems: viscosity of nanofluids confined in slit nanopores. , 2002, Journal of nanoscience and nanotechnology.

[10]  Clement Kleinstreuer,et al.  Laminar nanofluid flow in microheat-sinks , 2005 .

[11]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[12]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Dongsik Kim,et al.  Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation , 2007 .

[14]  Prasanta Kumar Das,et al.  Synthesis and characterization of nanofluid for advanced heat transfer applications , 2006 .

[15]  Haisheng Chen,et al.  Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe , 2007 .

[16]  Chi-Chuan Wang,et al.  Enhancement of Thermal Conductivity with CuO for Nanofluids , 2006 .

[17]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[18]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[19]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[20]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[21]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[22]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[23]  A. Kleinhammes,et al.  Confinement Effect on Dipole-Dipole Interactions in Nanofluids , 2001, Science.

[24]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method , 2006 .

[25]  Mansoo Choi,et al.  Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities , 2003 .

[26]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[27]  Patricia E. Gharagozloo,et al.  A Benchmark Study on the Thermal Conductivity of Nanofluids , 2009 .

[28]  Jinlin Wang,et al.  Measurements of nanofluid viscosity and its implications for thermal applications , 2006 .

[29]  Yulong Ding,et al.  Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) , 2007 .

[30]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[31]  L. Pozhar,et al.  Self-diffusion in a fluid confined within a model nanopore structure , 2001 .

[32]  K. Gubbins,et al.  QUASIHYDRODYNAMICS OF NANOFLUID MIXTURES , 1997 .