Polynomial Representations of the Hecke Algebra of the Symmetric Group

We give a polynomial basis of each irreducible representation of the Hecke algebra, as well as an adjoint basis. Decompositions in these bases are obtained by mere specializations.

[1]  Alain Lascoux,et al.  Yang-Baxter Graphs, Jack and Macdonald Polynomials , 2001 .

[2]  Peter Norbert Hoefsmit Representations of Hecke Algebras of finite groups with BN-Pairs of classical type , 1974 .

[3]  Tullio Ceccherini-Silberstein,et al.  Representation Theory of the Symmetric Groups: The Okounkov-Vershik Approach, Character Formulas, and Partition Algebras , 2010 .

[4]  Alain Lascoux,et al.  Turbo-Straightening for Decomposition into Standard Bases , 1992, Int. J. Algebra Comput..

[5]  Arun Ram,et al.  Combinatorial Representation Theory , 1997, math/9707221.

[6]  G. Murphy,et al.  On the representation theory of the symmetric groups and associated Hecke algebras , 1992 .

[7]  Die irreduziblen Darstellungen der symmetrischen Gruppe , 1935 .

[8]  I. Cherednik Special bases of irreducible representations of a degenerate affine Hecke algebra , 1986 .

[9]  Local algebras and a new version of Young's orthogonal form , 1990 .

[10]  V. Faĭziev Pseudocharacters on free products of semigroups , 1987 .

[11]  Anne Katz Rn,et al.  A New Perspective , 2003 .

[12]  Stan Wagon,et al.  Faster Algorithms for Frobenius Numbers , 2005, Electron. J. Comb..

[13]  Paul Zinn-Justin,et al.  Around the Razumov-Stroganov Conjecture: Proof of a Multi-Parameter Sum Rule , 2004, Electron. J. Comb..

[14]  A. Vershik,et al.  A new approach to representation theory of symmetric groups , 1996 .

[15]  Friedrich Knop,et al.  Symmetric and non-symmetric quantum Capelli polynomials , 1996, q-alg/9603028.

[16]  Alain Lascoux,et al.  Deformed Kazhdan-Lusztig elements and Macdonald polynomials , 2010, J. Comb. Theory A.

[17]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .

[18]  Jacques Désarménien An algorithm for the rota straightening formula , 1980, Discret. Math..

[19]  C. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .

[20]  D. Littlewood,et al.  The Theory of Group Characters and Matrix Representations of Groups , 2006 .

[21]  Matematik Representation Theory of The Symmetric Group , 2010 .

[22]  G. James,et al.  The Representation Theory of the Symmetric Group , 2009 .

[23]  P. Erdös,et al.  Interpolation , 1953, An Introduction to Scientific, Symbolic, and Graphical Computation.

[24]  R. Thrall,et al.  Young’s semi-normal representation of the symmetric group , 1941 .

[25]  Young's natural idempotents as polynomials , 1997 .

[26]  Siddhartha Sahi,et al.  Interpolation, Integrality, and a Generalization of Macdonald's Polynomials , 1996 .

[27]  Alfred Young,et al.  The collected papers of Alfred Young 1873-1940 , 1977 .

[28]  R. Wilson The classical groups , 2009 .

[29]  A. Lascoux Symmetric Functions and Combinatorial Operators on Polynomials , 2003 .

[30]  A. Lascoux Pfaffians and representations of the symmetric group , 2006, math/0610510.

[31]  P. Py On the Representation Theory of the Symmetric Groups , 2005 .

[32]  H. Weyl The Classical Groups , 1940 .

[33]  On Polynomials Interpolating Between the Stationary State of a O(n) Model and a Q.H.E. Ground State , 2006, cond-mat/0608160.

[34]  A. Lascoux,et al.  Symmetrization operators on polynomial rings , 1987 .

[35]  Alain Lascoux,et al.  Symmetry and flag manifolds , 1983 .