Semantic Social Network Analysis: A Concrete Case

In this chapter we present our approach to analyzing such semantic social networks and capturing collective intelligence from collaborative interactions to challenge requirements of Enterprise 2.0. Our tools and models have been tested on an anonymized dataset from Ipernity.com, one of the biggest French social web sites centered on multimedia sharing. This dataset contains over 60,000 users, around half a million declared relationships of three types, and millions of interactions (messages, comments on resources, etc.). We show that the enriched semantic web framework is particularly well-suited for representing online social networks, for identifying their key features and for predicting their evolution. Organizing huge quantity of socially produced information is necessary for a future acceptance of social applications in corporate contexts.

[1]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[2]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[3]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[4]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[5]  J. Coleman,et al.  Social Capital in the Creation of Human Capital , 1988, American Journal of Sociology.

[6]  L. Freeman,et al.  Centrality in valued graphs: A measure of betweenness based on network flow , 1991 .

[7]  John Scott Social Network Analysis , 1988 .

[8]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[9]  Barry Wellman,et al.  For a social network analysis of computer networks: a sociological perspective on collaborative work and virtual community , 1996, SIGCPR '96.

[10]  N. Lin Buidling a Network Theory of Social Capital , 1999, Connections.

[11]  R. Burt Structural Holes versus Network Closure as Social Capital , 2001 .

[12]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[13]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Douglas C. Engelbart,et al.  XML Topic Maps: Creating and Using Topic Maps for the Web , 2002 .

[15]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Olivier Corby,et al.  Corese : a Corporate Semantic Web Engine , 2002, WWW 2002.

[17]  Beom Jun Kim,et al.  Attack vulnerability of complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Fang Wu,et al.  Finding communities in linear time: a physics approach , 2003, ArXiv.

[19]  James A. Hendler,et al.  Trust Networks on the Semantic Web , 2003, WWW.

[20]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[21]  France Henri,et al.  Understanding and analysing activity and learning in virtual communities , 2003, J. Comput. Assist. Learn..

[22]  Catherine Faron-Zucker,et al.  Querying the Semantic Web with Corese Search Engine , 2004, ECAI.

[23]  M. A. Muñoz,et al.  Journal of Statistical Mechanics: An IOP and SISSA journal Theory and Experiment Detecting network communities: a new systematic and efficient algorithm , 2004 .

[24]  V. Latora,et al.  A measure of centrality based on network efficiency , 2004, cond-mat/0402050.

[25]  Massimo Marchiori,et al.  Method to find community structures based on information centrality. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[27]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Adam Mathes,et al.  Folksonomies-Cooperative Classification and Communication Through Shared Metadata , 2004 .

[29]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Peter Mika,et al.  Social Networks and the Semantic Web , 2007, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).

[31]  Dennis M. Wilkinson,et al.  A method for finding communities of related genes , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Reinhard Lipowsky,et al.  Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity and to Identify Communities and Subcommunities , 2004, International Conference on Computational Science.

[33]  R. Burt Structural Holes and Good Ideas1 , 2004, American Journal of Sociology.

[34]  Andreas Harth,et al.  Towards Semantically-Interlinked Online Communities , 2005, ESWC.

[35]  Carolyn A. Martin From high maintenance to high productivity , 2005 .

[36]  Peter Mika,et al.  Ontologies are us: A unified model of social networks and semantics , 2005, J. Web Semant..

[37]  Bernardo A. Huberman,et al.  The Structure of Collaborative Tagging Systems , 2005, ArXiv.

[38]  Dustin Arendt,et al.  An Effective Anytime Anywhere Parallel Approach for Centrality Measurements in Social Network Analysis , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[39]  Grigory Begelman,et al.  Automated Tag Clustering: Improving search and exploration in the tag space , 2006 .

[40]  M. Newman Erratum: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality (Physical Review e (2001) 64 (016132)) , 2006 .

[41]  Andrew McAfee,et al.  Enterprise 2.0: the dawn of emergent collaboration , 2006, IEEE Engineering Management Review.

[42]  Matthieu Latapy,et al.  Computing Communities in Large Networks Using Random Walks , 2004, J. Graph Algorithms Appl..

[43]  David A. Bader,et al.  Parallel Algorithms for Evaluating Centrality Indices in Real-world Networks , 2006, 2006 International Conference on Parallel Processing (ICPP'06).

[44]  Rose Dieng,et al.  Towards an Ontology for Knowledge Management in Communities of Practice , 2006, PAKM.

[45]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[46]  Jean-François Baget,et al.  RDF with regular expressions , 2006 .

[47]  John C. Paolillo,et al.  Social Network Analysis on the Semantic Web: Techniques and Challenges for Visualizing FOAF , 2006, Visualizing the Semantic Web, 2nd Edition.

[48]  Csaba Veres,et al.  The Language of Folksonomies: What Tags Reveal About User Classification , 2006, NLDB.

[49]  P. Schmitz,et al.  Inducing Ontology from Flickr Tags , 2006 .

[50]  Tantek Çelik,et al.  Microformats: a pragmatic path to the semantic web , 2006, WWW '06.

[51]  Hector Garcia-Molina,et al.  Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems , 2006 .

[52]  Amit P. Sheth,et al.  SPARQ2L: towards support for subgraph extraction queries in rdf databases , 2007, WWW '07.

[53]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[54]  Ulrik Brandes,et al.  Centrality Estimation in Large Networks , 2007, Int. J. Bifurc. Chaos.

[55]  Enrico Motta,et al.  Integrating Folksonomies with the Semantic Web , 2007, ESWC.

[56]  Krys J. Kochut,et al.  SPARQLeR: Extended Sparql for Semantic Association Discovery , 2007, ESWC.

[57]  John G. Breslin,et al.  Tag Mediated Society with SCOT Ontology , 2007, Semantic Web Challenge.

[58]  Céline Van Damme,et al.  FolksOntology : An Integrated Approach for Turning Folksonomies into Ontologies , 2007 .

[59]  Fabio Abbattista,et al.  Fostering Knowledge Evolution through Community-based Participation , 2007, CKC.

[60]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[61]  Benjamin M. Good,et al.  Bridging the gap between social tagging and semantic annotation: E.D. the Entity Describer , 2007 .

[62]  Simone Braun,et al.  Ontology Maturing: a Collaborative Web 2.0 Approach to Ontology Engineering , 2007, CKC.

[63]  Peter Mika Social Networks and the Semantic Web (Semantic Web and Beyond) , 2007 .

[64]  Alexandre Passant,et al.  Using Ontologies to Strengthen Folksonomies and Enrich Information Retrieval in Weblogs: Theoretical background and corporate use-case , 2007, ICWSM.

[65]  Vlad Tanasescu,et al.  Extreme Tagging: Emergent Semantics through the Tagging of Tags , 2007, ESOE.

[66]  Thomas Gruber,et al.  Ontology of Folksonomy: A Mash-Up of Apples and Oranges , 2007, Int. J. Semantic Web Inf. Syst..

[67]  Olivier Corby,et al.  Web, Graphs and Semantics , 2008, ICCS.

[68]  Ben Adida hGRDDL: Bridging microformats and RDFa , 2008, J. Web Semant..

[69]  Jennifer Golbeck,et al.  Linking Social Networks on the Web with FOAF: A Semantic Web Case Study , 2008, AAAI.

[70]  John G. Breslin,et al.  Using the Semantic Web for linking and reusing data across Web 2.0 communities , 2008, J. Web Semant..

[71]  Ciro Cattuto,et al.  Semantic Grounding of Tag Relatedness in Social Bookmarking Systems , 2008, SEMWEB.

[72]  Andrea Marchetti,et al.  Tagpedia: a Semantic Reference to Describe and Search for Web Resources , 2008, SWKM.

[73]  Marek Hatala,et al.  Leveraging Folksonomies for Ontology Evolution in E-learning Environments , 2008, 2008 IEEE International Conference on Semantic Computing.

[74]  Fabien L. Gandon,et al.  State of the Art on Social Network Analysis and its Applications on a Semantic Web , 2008, SDoW@ISWC.

[75]  Thomas R. Gruber,et al.  Collective knowledge systems: Where the Social Web meets the Semantic Web , 2008, J. Web Semant..

[76]  Alexandre Passant,et al.  Meaning Of A Tag: A collaborative approach to bridge the gap between tagging and Linked Data , 2008, LDOW.

[77]  Monique Grandbastien,et al.  Merging semantic and participative approaches for organising teachers' documents , 2008 .

[78]  Enrico Motta,et al.  Semantically enriching folksonomies with FLOR , 2008 .

[79]  Catherine Faron-Zucker,et al.  SweetWiki: A semantic wiki , 2008, J. Web Semant..

[80]  Seeding , Weeding , Fertilizing – Different Tag Gardening Activities for Folksonomy Maintenance and Enrichment , 2008 .

[81]  Marcelo Arenas,et al.  nSPARQL: A Navigational Language for RDF , 2008, SEMWEB.

[82]  Catherine Faron-Zucker,et al.  Griwes: Generic Model and Preliminary Specifications for a Graph-Based Knowledge Representation Toolkit , 2008, ICCS.

[83]  Peter Sanders,et al.  Better Approximation of Betweenness Centrality , 2008, ALENEX.

[84]  Edward Benson,et al.  Bridging the semantic Web and Web 2.0 with Representational State Transfer (REST) , 2008, J. Web Semant..

[85]  Axel Polleres,et al.  XSPARQL: Traveling between the XML and RDF Worlds - and Avoiding the XSLT Pilgrimage , 2008, ESWC.

[86]  Fabien L. Gandon,et al.  Bridging ontologies and folksonomies to leverage knowledge sharing on the social Web: A brief survey , 2008, 2008 23rd IEEE/ACM International Conference on Automated Software Engineering - Workshops.

[87]  James A. Hendler,et al.  Metcalfe's law, Web 2.0, and the Semantic Web , 2008, J. Web Semant..

[88]  James A. Hendler,et al.  Web science: an interdisciplinary approach to understanding the web , 2008, CACM.

[89]  Jeff Z. Pan,et al.  The 7th International Semantic Web Conference , 2008 .

[90]  Andrea Marchetti,et al.  Semantify del.icio.us: Automatically Turn your Tags into Senses , 2008, SDoW@ISWC.

[91]  Olivier Corby,et al.  Analysis of a Real Online Social Network Using Semantic Web Frameworks , 2009, SEMWEB.

[92]  Alexandre Passant Technologies du Web Sémantique pour l’Entreprise 2.0 , 2009 .

[93]  Ciro Cattuto,et al.  Evaluating similarity measures for emergent semantics of social tagging , 2009, WWW '09.

[94]  Olivier Corby,et al.  Querying the Semantic Web of Data using SPARQL, RDF and XML , 2009 .

[95]  Claudio Gutiérrez,et al.  Representing, Querying and Transforming Social Networks with RDF/SPARQL , 2009, ESWC.

[96]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.