Mathematical aspects relative to the fluid statics of a self-gravitating perfect-gas isothermal sphere

Abstract We open the paper with introductory considerations describing the motivations of our long-term research plan targeting gravitomagnetism, illustrating the fluid-dynamics numerical test case selected for that purpose, that is, a perfect-gas sphere contained in a solid shell located in empty space sufficiently away from other masses, and defining the main objective of this study: the determination of the gravitofluid-static field required as initial field ( t = 0 ) in forthcoming fluid-dynamics calculations. The determination of the gravitofluid-static field requires the solution of the isothermal-sphere Lane–Emden equation. We do not follow the habitual approach of the literature based on the prescription of the central density as boundary condition; we impose the gravitational field at the solid-shell internal wall. As the discourse develops, we point out differences and similarities between the literature’s and our approach. We show that the nondimensional formulation of the problem hinges on a unique physical characteristic number that we call gravitational number because it gauges the self-gravity effects on the gas’ fluid statics. We illustrate and discuss numerical results; some peculiarities, such as gravitational-number upper bound and multiple solutions, lead us to investigate the thermodynamics of the physical system, particularly entropy and energy, and preliminarily explore whether or not thermodynamic-stability reasons could provide justification for either selection or exclusion of multiple solutions. We close the paper with a summary of the present study in which we draw conclusions and describe future work.

[1]  Ewa Weinmüller,et al.  On the calculation of the finite Hankel transform eigenfunctions , 2013 .

[2]  H. A. Lorentz,et al.  Considerations on Gravitation , 2007 .

[3]  Jose A. Heras,et al.  Can Maxwell’s equations be obtained from the continuity equation? , 2007, 0812.4785.

[4]  George Howard Darwin On the Mechanical Conditions of a Swarm of Meteorites, and on Theories of Cosmogony , 1889 .

[5]  A. Ritter Untersuchungen über die Höhe der Atmosphäre und die Constitution gasförmiger Weltkörper , 1878 .

[6]  V. N. Borodikhin Vector theory of gravity , 2011 .

[7]  W. B. Bonnor Stability of polytropic gas spheres , 1958 .

[8]  R. Fowler,et al.  Emden's equation: The solutions of Emden's and similar differential equations , 1930 .

[9]  R. Fowler FURTHER STUDIES OF EMDEN'S AND SIMILAR DIFFERENTIAL EQUATIONS , 1931 .

[10]  Karline Soetaert,et al.  SOLVING BOUNDARY VALUE PROBLEMS IN THE OPEN SOURCE SOFTWARE R: PACKAGE bvpSolve , 2014 .

[11]  Jürgen Renn The genesis of general relativity , 2008 .

[12]  Pierluigi Amodio,et al.  A Stepsize Variation Strategy for the Solution of Regular Sturm‐Liouville Problems , 2011 .

[13]  Astronomer Royal,et al.  The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems , 1968 .

[14]  E. Harris,et al.  Analogy between general relativity and electromagnetism for slowly moving particles in weak gravitational fields , 1991 .

[15]  G. G. Nyambuya,et al.  Fundamental Physical Basis for Maxwell-Heaviside Gravitomagnetism , 2015 .

[16]  D. Joseph,et al.  Quasilinear Dirichlet problems driven by positive sources , 1973 .

[17]  Pierre-Henri Chavanis,et al.  PHASE TRANSITIONS IN SELF-GRAVITATING SYSTEMS , 2006 .

[18]  Janina Maier,et al.  Gravitational Physics Of Stellar And Galactic Systems , 2016 .

[19]  H. Kolbenstvedt,et al.  Gravomagnetism in special relativity , 1988 .

[20]  D. H. Sattinger,et al.  Gravitation and Special Relativity , 2013, Journal of Dynamics and Differential Equations.

[21]  Carlton M. Caves,et al.  Laboratory experiments to test relativistic gravity , 1977 .

[22]  R. Webbink,et al.  in Dynamics of Star Clusters , 1985 .

[23]  J. Lense,et al.  Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .

[24]  P. T. Landsberg,et al.  Entropy and the Unity of Knowledge II , 1987 .

[25]  Pierluigi Amodio,et al.  A Matrix Method for the Solution of Sturm-Liouville Problems 1 , 2011 .

[26]  Geoffrey Cantor,et al.  Faraday's search for the gravelectric effect , 1991 .

[27]  Jeff R. Cash,et al.  Algorithm 927: The MATLAB Code bvptwp.m for the Numerical Solution of Two Point Boundary Value Problems , 2013, TOMS.

[28]  Robert L. Forward,et al.  General Relativity for the Experimentalist , 1961, Proceedings of the IRE.

[29]  W. Rindler,et al.  Essential relativity , 1978, Nature.

[30]  Oliver Heaviside,et al.  Electromagnetic theory : Including an account of Heaviside's unpublished notes for a fourth volume and with a foreword by Edmund Whittaker , 1971 .

[31]  Donato Trigiante,et al.  A Hybrid Mesh Selection Strategy Based on Conditioning for Boundary Value ODE Problems , 2004, Numerical Algorithms.

[32]  Daiichiro Sugimoto,et al.  Gravothermal Catastrophe and Negative Specific Heat of Self-Gravitating Systems , 1978 .

[33]  G. López,et al.  On Maxwell Equations for Gravitational Field , 2018 .

[34]  Arthur Eddington,et al.  The Internal Constitution of the Stars , 1928, The Mathematical Gazette.

[35]  Francesca Mazzia,et al.  A new mesh selection algorithm, based on conditioning, for two-point boundary value codes , 2005 .

[36]  J. R. Ipser On using entropy arguments to study the evolution and secular stability of spherical stellar-dynamical systems. , 1974 .

[37]  John Stachel,et al.  The genesis of general relativity , 1979 .

[38]  W. Bonnar,et al.  Boyle's Law and gravitational instability , 1956 .

[39]  I. M. Gel'fand,et al.  Some problems in the theory of quasilinear equations , 1987 .

[40]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[41]  H. J. Lane On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment , 1870, American Journal of Science and Arts.

[42]  Pierluigi Amodio,et al.  A finite differences MATLAB code for the numerical solution of second order singular perturbation problems , 2012, J. Comput. Appl. Math..

[43]  Öfversigt af Finska Vetenskaps-Societetens Förhandlingar , 1892 .

[44]  Ewa Weinmüller,et al.  Numerical simulation of the whispering gallery modes in prolate spheroids , 2014, Comput. Phys. Commun..

[45]  K. Schmitt,et al.  The Liouville–Bratu–Gelfand Problem for Radial Operators , 2002 .

[46]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[47]  W. Thirring,et al.  Negative specific heat, the thermodynamic limit, and ergodicity. , 2003, Physical review letters.

[48]  Charles Hutton,et al.  Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[49]  Robert T. Jantzen,et al.  The Many Faces of Gravitoelectromagnetism , 1992 .

[50]  Gunnar Nordström,et al.  On the possibility of unifying the electromagnetic and the gravitational fields , 2007 .

[51]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[52]  C. Clarke,et al.  Principles of Astrophysical Fluid Dynamics , 2007 .

[53]  Piet Hut,et al.  Dynamics of Star Clusters , 1985 .

[54]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[55]  Jstor Philosophical Transactions of the Royal Society of London (A) , 2011 .

[56]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[57]  James Clerk Maxwell,et al.  A dynamical theory of the electromagnetic , 1967 .

[58]  Karl Kunisch,et al.  The Numerical Solution of the Steady State Solid Fuel Ignition Model and Its Optimal Control , 2000, SIAM J. Sci. Comput..

[59]  R. Leighton,et al.  The Feynman Lectures on Physics; Vol. I , 1965 .

[60]  D. Lynden-Bell,et al.  NEGATIVE SPECIFIC HEAT IN ASTRONOMY, PHYSICS AND CHEMISTRY , 1998, cond-mat/9812172.

[61]  H. Pfister,et al.  Inertia and Gravitation , 2015 .

[62]  A. Eddington,et al.  The Internal Constitution of the Stars , 1920, Nature.

[63]  Jonathan Katz On the Number of Unstable Modes of an Equilibrium - Part Two , 1978 .

[64]  Fritz Paneth,et al.  Lehrbuch der Radioaktivität , 1923 .

[65]  D. Bedford,et al.  On relativistic gravitation , 1985 .

[66]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .

[67]  Sir William Thomson XXXII. On the equilibrium of a gas under its own gravitation only , 1887 .

[68]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[69]  Thanu Padmanabhan,et al.  Statistical mechanics of gravitating systems , 1990 .

[70]  徐鉴,et al.  Lane-Emden equations of second kind modelling thermal explosion in infinite cylinder and sphere , 2013 .

[71]  Simon J. Clark,et al.  Gauge symmetry and gravito-electromagnetism , 2000 .

[72]  Alessandra Sestini,et al.  The continuous extension of the B-spline linear multistep methods for BVPs on non-uniform meshes , 2009 .

[73]  Sulla Derivabilita,et al.  RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO , 2008 .

[74]  George William Hill On the Interior Constitution of the Earth as Respects Density , 1888 .

[75]  T. Padmanabhan,et al.  Antonov Instability and Gravothermal Catastrophe---Revisited , 1989 .

[76]  M. Aurada,et al.  Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.

[77]  S. A. Goudsmit,et al.  Journal of Applied Mathematics and Physics (Zeitschrift für Angewandte Mathematik und Physik) , 1950 .

[78]  W. Thirring,et al.  Systems with negative specific heat , 1970 .

[79]  Enrico Betti Sopra l'equilibrio di una massa di gaz perfetto isolata nello spazio , 1880 .

[80]  M. Poincaré,et al.  Sur la dynamique de l’électron , 1906 .

[81]  Hans Thirring,et al.  ber die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. , 1918 .

[82]  Robert A. Van Gorder,et al.  Exact first integrals for a Lane–Emden equation of the second kind modeling a thermal explosion in a rectangular slab , 2011 .

[83]  H. Poincaré,et al.  Les Méthodes nouvelles de la Mécanique céleste and An Introduction to the Study of Stellar Structure , 1958 .

[84]  L. Velazquez,et al.  Remarks about the thermodynamics of astrophysical systems in mutual interaction and related notions , 2016, 1603.00044.

[85]  Albert Einstein Gibt es eine Gravitationswirkung, die der elektrodynamischen Induktionswirkung analog ist? , 1912 .

[86]  O Heavyside,et al.  Electromagnetic Theory, Vol. 1 , 1894 .

[87]  P. Chavanis,et al.  Gravitational instability of finite isothermal spheres , 2001, astro-ph/0103159.

[88]  Alice Bean,et al.  PHYSICAL REVIEW D PARTICLES AND FIELDS , 1997 .

[89]  Bruna Donatelli Comptes rendues hebdomadaires des séances de l'Académie des Sciences , 1982 .

[90]  J. Jeans,et al.  The Stability of a Spherical Nebula , 1902 .

[91]  V. A. Antonov Most probable phase distribution in spherical star systems and conditions for its existence , 1985 .

[92]  David H. Sattinger,et al.  On the universality of Maxwell’s equations , 2018 .

[93]  Bahram Mashhoon,et al.  Time-varying gravitomagnetism , 2008, 0802.1356.

[94]  Kirk T. McDonald Answer to Question #49. Why c for gravitational waves? , 1997 .

[95]  Donato Bini,et al.  Orbital effects due to gravitational induction , 2015, 1510.02945.

[96]  J. C. Poggendorf Annalen der Physik und Chemie , 1829 .

[97]  Pierluigi Amodio,et al.  Mathematical aspects relative to the fluid statics of a self-gravitating perfect-gas isothermal sphere , 2019 .

[98]  Koninklijke Nederlandse Akademie van Wetenschappen Proceedings of the Section of Sciences , 2017 .

[99]  Max Abraham Recent Theories of Gravitation , 2007 .

[100]  Donald Bedford,et al.  The gravitational Poynting vector and energy transfer , 1987 .

[101]  Hans Thirring,et al.  Republication of: On the formal analogy between the basic electromagnetic equations and Einstein’s gravity equations in first approximation , 2012 .

[102]  Jose A. Heras How to obtain the covariant form of Maxwell's equations from the continuity equation , 2009 .

[103]  D. Lynden-Bell,et al.  On the negative specific heat paradox , 1977 .