Hidden Markov Models with Spectral Features for 2D Shape Recognition

We present a technique using Markov models with spectral features for recognizing 2D shapes. We analyze the properties of Fourier spectral features derived from closed contours of 2D shapes and use these features for 2D pattern recognition. We develop algorithms for reestimating parameters of hidden Markov models. To demonstrate the effectiveness of our models, we have tested our methods on two image databases: hand-tools and unconstrained handwritten numerals. We are able to achieve high recognition rates of 99.4 percent and 96.7 percent without rejection on these two sets of image data, respectively.

[1]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[2]  L. N. Kanal,et al.  A Bivariate Autoregressive Modeling Technique for Analysis and Classification of Planar Shapes , 1990 .

[3]  Timothy F. Cootes,et al.  A Generic System For Classifying Variable Objects Using Flexible Template Matching , 1993, BMVC.

[4]  Manohar Das,et al.  A Bivariate Autoregressive Technique for Analysis and Classification of Planar Shapes , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[6]  Richard J. Prokop,et al.  A survey of moment-based techniques for unoccluded object representation and recognition , 1992, CVGIP Graph. Model. Image Process..

[7]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Thomas H. Reiss,et al.  The revised Fundamental Theorem of Moment Invariants , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Geoffrey E. Hinton,et al.  Combining deformable models and neural networks for handprinted digit recognition , 1994 .

[10]  Yang He,et al.  2-D Shape Classification Using Hidden Markov Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jinhai Cai,et al.  Integration of structural and statistical information for unconstrained handwritten numeral recognition , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[12]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[13]  SeppänenTapio,et al.  An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape Classification , 1995 .

[14]  Majid Ahmadi,et al.  Pattern recognition with moment invariants: A comparative study and new results , 1991, Pattern Recognit..

[15]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Takio Kurita,et al.  Complex Autoregressive Model for Shape Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[19]  Mandyam D. Srinath,et al.  Partial Shape Classification Using Contour Matching in Distance Transformation , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  A. J. Elms The representation and recognition of text using hidden Markov models , 1996 .

[21]  Matti Pietikäinen,et al.  An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Stan Sclaroff,et al.  Deformable prototypes for encoding shape categories in image databases , 1995, Pattern Recognit..