Liquid fertilizer application to ratoon cane using a soil punching method

Abstract Sugarcane is a semi-perennial crop that is cultivated for five or six harvest cycles before replanting. Following annual mechanized harvest, nitrogen (N) fertilizer is commonly applied during the ratoon cane sprouting phase through furrows along the side of plant rows (subsurface application) or banded on the surface. With subsurface application, mechanical operations are hampered by the trash coverage that remains after harvest; furthermore, opening furrows can partially damage roots. However, with soil surface application, nutrient uptake efficiency is decreased as a result of microbial immobilization and losses through ammonia volatilization and runoff. Thus, to achieve subsurface application for ratoon cane with minimal mobilization of the system (soil, straw and roots), this work aimed to (i) develop and evaluate a mechanical prototype that enables a soil punching process in ratoon cane and (ii) evaluate the cane yield using the soil punching method for liquid N fertilizer injection compared to liquid N fertilizer applied alongside of plant rows on the surface and subsurface (through furrows). To evaluate the punching mechanism, we performed a kinematic simulation (puncher tip displacement and injection time interval), tests in a soil bin and ratoon cane field. Based on prototype operations, the average distance between applications was 300 mm, with an average depth up to 90 mm, which was similar to the design requirements. Regarding results of liquid N fertilization methods in a ratoon cane field, we found that the incorporation treatments (soil punching and subsurface application through furrows) achieved slightly better cane yield (98–96 Mg ha−1) when compared to the surface application (91 Mg ha−1) and control treatment (75 Mg ha−1). In general, the soil punching was considered as a promising alternative method for supplying liquid fertilizer at the subsurface using low-energy power (approximately 745 W) with minimal environmental impact.

[1]  Nelson Luis Cappelli,et al.  Desenvolvimento e avaliação de uma servoválvula de baixo custo para a aplicação de insumos líquidos , 2006 .

[2]  P. Trivelin,et al.  Balanço da adubação nitrogenada sólida e fluida de cobertura na cultura de milho, em sistema plantio direto no Triângulo Mineiro (MG) , 2000 .

[3]  M. Braunack,et al.  Effect of harvest traffic position on soil conditions and sugarcane (Saccharum officinarum) response to environmental conditions in Queensland, Australia , 2006 .

[4]  Jinfeng Wang,et al.  Experimental Study on Pricking Hole Performances of Deep Application Liquid Fertilizer Device , 2011, 2011 Fourth International Conference on Intelligent Computation Technology and Automation.

[5]  S. J. Marley,et al.  A Point-Injector Applicator to Improve Fertilizer Management , 1989 .

[6]  Paulo Sérgio Graziano Magalhães,et al.  Simulated and Experimental Analyses of a Toothed Rolling Coulter for Cutting Crop Residues , 2007 .

[7]  Ying Chen A LIQUID MANURE INJECTION TOOL ADAPTED TO DIFFERENT SOIL CONDITIONS , 2002 .

[8]  Anònim Anònim Keys to Soil Taxonomy , 2010 .

[9]  P. Thorburn,et al.  An improved way to determine nitrogen fertiliser requirements of sugarcane crops to meet global environmental challenges , 2011, Plant and Soil.

[10]  H. Cantarella,et al.  FERTILIZERS FOR SUGARCANE , 2014 .

[11]  P. Trivelin,et al.  Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil , 2012 .

[12]  P. Trivelin,et al.  Produtividade da cana-de-açúcar relacionada ao nitrogênio residual da adubação e do sistema radicular , 2007 .

[13]  P. Trivelin,et al.  Fitomassa de raízes e da parte aérea da cana-de-açúcar relacionada à adubação nitrogenada de plantio , 2009 .

[14]  Ammonia losses estimated by an open collector from urea applied to sugarcane straw , 2012 .

[15]  H. T. Søgaard,et al.  Injection methods to reduce ammonia emission from volatile liquid fertilisers applied to growing crops , 2008 .

[16]  Jinfeng Wang,et al.  Optimal Design and Analysis on Pricking Hole Mechanism with Planetary Elliptic Gears for Deep-Fertilization Liquid Fertilizer Applicator , 2011, 2011 Second International Conference on Digital Manufacturing & Automation.

[17]  L. H. C. Anjos,et al.  Sistema Brasileiro de Classificação de Solos. , 2006 .

[18]  H. Cantarella,et al.  Ammonia volatilisation from urease inhibitor-treated urea applied to sugarcane trash blankets , 2007 .

[19]  G. C. Vitti,et al.  Volatilização de N-NH3 de fontes nitrogenadas em cana-de-açúcar colhida sem despalha a fogo , 2003 .

[20]  J. Chen,et al.  Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China , 2015 .

[21]  P. Trivelin,et al.  Produtividade da cana-de-açúcar relacionada à localização de adubos nitrogenados aplicados sobre os resíduos culturais em canavial sem queima , 2007 .

[22]  H. Franco,et al.  Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions , 2011 .

[23]  Xiaohuan Xi,et al.  Design and Development Control System for Deep-Fertilization Variable Liquid Fertilizer Applicator , 2011, 2011 Second International Conference on Digital Manufacturing & Automation.

[24]  H. Franco,et al.  The Role of Nitrogen Fertilizers in Sugarcane Root Biomass under Field Conditions , 2014 .

[25]  M. Regis Verde Leal,et al.  Biomass Power Generation: Sugar Cane Bagasse and Trash , 2008 .

[26]  M. Prado Nutrição Nitrogenada em Soqueiras e a Qualidade Tecnológica da Cana-de-Açúcar , 2006 .

[27]  C. Medina,et al.  Sugarcane root length density and distribution from root intersection counting on a trench-profile , 2011 .

[28]  G. C. Vitti,et al.  Ammonia volatilization from coated urea forms , 2013 .

[29]  Zigomar Menezes de Souza,et al.  Effects Of Traffic Control On The Soil Physical Quality And The Cultivation Of Sugarcane [controle De Tráfego E Seu Efeito Na Qualidade Física Do Solo E No Cultivo Da Cana-de-açúcar] , 2014 .

[30]  F. D. Tompkins,et al.  Probe-type injector for fluid fertilizers. , 1990 .

[31]  Z. D. Souza,et al.  Controle de tráfego agrícola e atributos físicos do solo em área cultivada com cana-de-açúcar , 2010 .

[32]  P. Saffigna,et al.  Effect of fertilizer placement on nitrogen loss from sugarcane in tropical Queensland , 2002, Nutrient Cycling in Agroecosystems.

[33]  H. Franco,et al.  Stalk yield and technological attributes of planted cane as related to nitrogen fertilization , 2010 .

[34]  H. Franco,et al.  Contribution of fertilizer nitrogen to the total nitrogen extracted by sugarcane under Brazilian field conditions , 2015, Nutrient Cycling in Agroecosystems.