Coloring Concept Detection in Video Using Interest Regions Coloring Concept Detection in Video Using Interest Regions Specialization: Multimedia and Intelligent Systems

Video concept detection aims to detect high-level semantic information present in video. State-of-the-art systems are based on visual features and use machine learning to build concept detectors from annotated examples. The choice of features and machine learning algorithms is of great influence on the accuracy of the concept detector. So far, intensitybased SIFT features based on interest regions have been applied with great success in image retrieval. Features based on interest regions, also known as local features, consist of an interest region detector and a region descriptor. In contrast to using intensity information only, we will extend both interest region detection and region description with color information in this thesis. We hypothesize that automated concept detection using interest region features benefits from the addition of color information. Our experiments, using the Mediamill Challenge benchmark, show that the combination of intensity features with color features improves significantly over intensity features alone.

[1]  M M Astrahan SPEECH ANALYSIS BY CLUSTERING, OR THE HYPERPHONEME METHOD , 1970 .

[2]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  William K. Pratt,et al.  Digital image processing, 2nd Edition , 1991, A Wiley-Interscience publication.

[5]  Haim Levkowitz,et al.  GLHS: A Generalized Lightness, Hue, and Saturation Color Model , 1993, CVGIP Graph. Model. Image Process..

[6]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[7]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[8]  L. Gool,et al.  Color-Based Moment Invariants for Viewpoint and Illumination Independent Recognition of Planar Color Patterns , 1999 .

[9]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[10]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Cordelia Schmid,et al.  Indexing Based on Scale Invariant Interest Points , 2001, ICCV.

[13]  C. A. Murthy,et al.  Density-Based Multiscale Data Condensation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Brian V. Funt,et al.  A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data , 2002, IEEE Trans. Image Process..

[15]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[17]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[18]  David A. Forsyth,et al.  A novel algorithm for color constancy , 1990, International Journal of Computer Vision.

[19]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[20]  John R. Smith,et al.  Multi-granular detection of regional semantic concepts , 2004, ICME.

[21]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[22]  Christian Petersohn Fraunhofer HHI at TRECVID 2004: Shot Boundary Detection System , 2004, TRECVID.

[23]  Arnold W. M. Smeulders,et al.  The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.

[24]  Lixin Fan,et al.  Categorizing Nine Visual Classes using Local Appearance Descriptors , 2004 .

[25]  Joost van de Weijer,et al.  Color constancy based on the Grey-edge hypothesis , 2005, IEEE International Conference on Image Processing 2005.

[26]  Raphaël Marée,et al.  Random subwindows for robust image classification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[28]  Antonio Torralba,et al.  Describing Visual Scenes using Transformed Dirichlet Processes , 2005, NIPS.

[29]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[32]  Joost van de Weijer,et al.  Edge and corner detection by photometric quasi-invariants , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[34]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[35]  Paul Over,et al.  TRECVID 2005 - An Overview , 2005, TRECVID.

[36]  Luc Van Gool,et al.  Modeling scenes with local descriptors and latent aspects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[37]  Joost van de Weijer,et al.  Boosting saliency in color image features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[38]  Cordelia Schmid,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[39]  Marcel Worring,et al.  MediaMill: Video Search using a Thesaurus of 500 Machine Learned Concepts , 2006, SAMT.

[40]  Cor J. Veenman,et al.  Robust Scene Categorization by Learning Image Statistics in Context , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[41]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[42]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[43]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[44]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[45]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[46]  Paul Over,et al.  TREC video retrieval evaluation TRECVID , 2008 .