On local tomography

In this paper we explain how the local tomography approach to tomographic problems can be extended to a wide range of situations including limited data problems, attenuated transforms, and generalized radon transforms. Numerical examples illustrate the use of local tomography applied to complete and limited data problems. Our analytic results are obtained through the use of microlocal analysis.

[1]  L. Hörmander Fourier integral operators. I , 1995 .

[2]  Shlomo Sternberg,et al.  Some Problems in Integral Geometry and Some Related Problems in Micro-Local Analysis , 1979 .

[3]  Jerrold E. Marsden,et al.  Review: Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, and Nolan R. Wallach, Symplectic geometry and Fourier analysis , 1979 .

[4]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[5]  Eric Todd Quinto,et al.  The dependence of the generalized Radon transform on defining measures , 1980 .

[6]  C. Metz,et al.  The exponential Radon transform , 1980 .

[7]  Eric Todd Quinto,et al.  The invertibility of rotation invariant Radon transforms , 1983 .

[8]  S. Helgason Groups and geometric analysis , 1984 .

[9]  G. Beylkin The inversion problem and applications of the generalized radon transform , 1984 .

[10]  E. T. Quinto,et al.  An Elementary Proof of Local Invertibility for Generalized and Attenuated Radon Transforms , 1985 .

[11]  David V. Finch CONE BEAM RECONSTRUCTION WITH SOURCES ON A CURVE , 1985 .

[12]  David V. Finch,et al.  Uniqueness for the attenuated x-ray transform in the physical range , 1986 .

[13]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[14]  Eric Todd Quinto,et al.  Support theorems for real-analytic Radon transforms , 1987 .

[15]  E. T. Quinto Tomographic reconstructions from incomplete data-numerical inversion of the exterior Radon transform , 1988 .

[16]  Michael Vogelius,et al.  A backprojection algorithm for electrical impedance imaging , 1990 .

[17]  Erik L. Ritman,et al.  Local tomography , 1992 .

[18]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[19]  Jan Boman An example of non-uniqueness for a generalized Radon transform , 1993 .