Universal dynamics in the expansion of vortex clusters in a dissipative two-dimensional superfluid

A large ensemble of quantum vortices in a superfluid may itself be treated as a novel kind of fluid that exhibits anomalous hydrodynamics. Here we consider the dynamics of vortex clusters with thermal friction, and present an analytic solution that uncovers a new universality class in the out-of-equilibrium dynamics of dissipative superfluids. We find that the long-time dynamics of the vorticity distribution is an expanding Rankine vortex (i.e.~top-hat distribution) independent of initial conditions. This highlights a fundamentally different decay process to classical fluids, where the Rankine vortex is forbidden by viscous diffusion. Numerical simulations of large ensembles of point vortices confirm the universal expansion dynamics, and further reveal the emergence of a frustrated lattice structure marked by strong correlations. We present experimental results in a quasi-two-dimensional Bose-Einstein condensate that are in excellent agreement with the vortex fluid theory predictions, demonstrating that the signatures of vortex fluid theory can be observed with as few as $N\sim 11$ vortices. Our theoretical, numerical, and experimental results establish the validity of the vortex fluid theory for superfluid systems.

[1]  Y. Shin,et al.  Kibble–Zurek universality in a strongly interacting Fermi superfluid , 2019, Nature Physics.

[2]  Matthew J. Davis,et al.  Coherent vortex dynamics in a strongly interacting superfluid on a silicon chip , 2019, Science.

[3]  P. Wiegmann,et al.  Edge Wave and Boundary Layer of Vortex Matter. , 2018, Physical review letters.

[4]  T. Simula,et al.  Order from chaos: Observation of large-scale flow from turbulence in a two-dimensional superfluid , 2018, 1801.06952.

[5]  Matthew J. Davis,et al.  Giant vortex clusters in a two-dimensional quantum fluid , 2018, Science.

[6]  Y. Levin,et al.  Nonequilibrium Statistical Mechanics of Two-Dimensional Vortices. , 2018, Physical review letters.

[7]  B. Mulkerin,et al.  Superfluid density and critical velocity near the Berezinskii-Kosterlitz-Thouless transition in a two-dimensional strongly interacting Fermi gas , 2017 .

[8]  Ashton S. Bradley,et al.  Emergent Non-Eulerian Hydrodynamics of Quantum Vortices in Two Dimensions. , 2017, Physical review letters.

[9]  Ashton S. Bradley,et al.  Enstrophy Cascade in Decaying Two-Dimensional Quantum Turbulence. , 2017, Physical review letters.

[10]  S. Seo,et al.  Observation of vortex-antivortex pairing in decaying 2D turbulence of a superfluid gas , 2016, Scientific Reports.

[11]  L. Angheluta,et al.  Origin of the inverse energy cascade in two-dimensional quantum turbulence. , 2016, Physical review. E.

[12]  C. Barenghi,et al.  Superfluid Boundary Layer. , 2016, Physical review letters.

[13]  Alexander L. Gaunt,et al.  Emergence of a turbulent cascade in a quantum gas , 2016, Nature.

[14]  W. Kwon,et al.  Observation of von Kármán Vortex Street in an Atomic Superfluid Gas. , 2016, Physical review letters.

[15]  H. Salman,et al.  Long-range ordering of topological excitations in a two-dimensional superfluid far from equilibrium , 2016, 1605.09760.

[16]  Isaac C. D. Lenton,et al.  Configurable microscopic optical potentials for Bose-Einstein condensates using a digital-micromirror device , 2016 .

[17]  Ashton S. Bradley,et al.  Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid , 2015, 1512.05517.

[18]  A. L. Marchant,et al.  Measuring the disorder of vortex lattices in a Bose-Einstein condensate , 2015, 1510.04897.

[19]  W. P. Bowen,et al.  Laser cooling and control of excitations in superfluid helium , 2015, Nature Physics.

[20]  W. Kwon,et al.  Thermal friction on quantum vortices in a Bose-Einstein condensate , 2015, 1509.02236.

[21]  N. Prokof'ev,et al.  Superfluid States of Matter , 2015 .

[22]  Ashton S. Bradley,et al.  Spectral energy transport in two-dimensional quantum vortex dynamics , 2014, 1411.5755.

[23]  A. J. Allen,et al.  Generation and decay of two-dimensional quantum turbulence in a trapped Bose-Einstein condensate , 2014, 1408.3268.

[24]  Matthew J. Davis,et al.  Emergence of order from turbulence in an isolated planar superfluid. , 2014, Physical review letters.

[25]  L. Skrbek,et al.  Effective viscosity in quantum turbulence: A steady-state approach , 2014 .

[26]  Carlo F. Barenghi,et al.  Introduction to quantum turbulence , 2014, Proceedings of the National Academy of Sciences.

[27]  C. Clark,et al.  Hysteresis in a quantized superfluid ‘atomtronic’ circuit , 2014, Nature.

[28]  P. Wiegmann,et al.  Anomalous hydrodynamics of two-dimensional vortex fluids. , 2013, Physical review letters.

[29]  Carlos Ramírez,et al.  Bose–Einstein Condensation of Collective Electron Pairs , 2014 .

[30]  W. Phillips,et al.  Driving phase slips in a superfluid atom circuit with a rotating weak link. , 2012, Physical review letters.

[31]  J. Dalibard,et al.  Superfluid behaviour of a two-dimensional Bose gas , 2012, Nature Physics.

[32]  Ashton S. Bradley,et al.  Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence , 2012, 1204.1103.

[33]  Ashton S. Bradley,et al.  Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein condensates , 2011, Physical Review A.

[34]  C. Chin,et al.  Observation of scale invariance and universality in two-dimensional Bose gases , 2010, Nature.

[35]  Kazuki Sasaki,et al.  Bénard-von Kármán vortex street in a Bose-Einstein condensate. , 2010, Physical review letters.

[36]  S. Nazarenko,et al.  Quantum turbulence cascades in the Gross-Pitaevskii model , 2009 .

[37]  N. Stanietsky,et al.  The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity , 2009, Proceedings of the National Academy of Sciences.

[38]  Hassan Aref,et al.  Point vortex dynamics: A classical mathematics playground , 2007 .

[39]  B. Lautrup Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World , 2004 .

[40]  O. Bühler Statistical mechanics of strong and weak point vortices in a cylinder , 2002 .

[41]  P. Engels,et al.  Driving Bose-Einstein-condensate vorticity with a rotating normal cloud. , 2001, Physical review letters.

[42]  W. Ketterle,et al.  Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.

[43]  D. Schecter,et al.  Vortex crystals from 2D Euler flow: Experiment and simulation , 1999 .

[44]  Andrea Prosperetti,et al.  Physics of Fluids , 1997 .

[45]  Vortex Dynamics in Dissipative Systems , 1997 .

[46]  C. Sackett,et al.  Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number , 1997 .

[47]  T. M. O'Neil,et al.  Nonaxisymmetric thermal equilibria of a cylindrically bounded guiding‐center plasma or discrete vortex system , 1990 .

[48]  Luo,et al.  Observation of the persistent-current splitting of a third-sound resonator. , 1989, Physical review. B, Condensed matter.

[49]  Physical Review Letters 63 , 1989 .

[50]  E. Siggia,et al.  Dynamics of superfluid films , 1980 .

[51]  E. J. Yarmchuk,et al.  Observation of Stationary Vortex Arrays in Rotating Superfluid Helium , 1979 .

[52]  David R. Nelson,et al.  Dislocation-mediated melting in two dimensions , 1979 .

[53]  E. Siggia,et al.  Dissipation in Two-Dimensional Superfluids , 1978 .

[54]  A. Fetter,et al.  VORTICES IN AN IMPERFECT BOSE GAS. IV. TRANSLATIONAL VELOCITY. , 1966 .

[55]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.