Molecular simulation of hydrogen diffusion in interpenetrated metal-organic frameworks.

In this work a combined molecular dynamics simulation and dynamically corrected transition-state theory (dcTST) study was performed to investigate the effect of interpenetration (catenation) on hydrogen diffusion in metal-organic frameworks (MOFs) as well as their relationships. The results on 10 isoreticular MOFs (IRMOFs) with and without interpenetration show that catenation can reduce hydrogen diffusivity by a factor of 2 to 3 at room temperature, and for the interpenetrated IRMOFs with multi-pores of different sizes, free volume can serve as a measure for hydrogen diffusivity: the bigger the free volume, the larger the hydrogen diffusivity. In addition, the present work shows that dcTST can directly reveal the influence of the MOF structure on hydrogen diffusivity, which is a powerful tool for providing a better understanding of the relationship between gas diffusivity and MOF structure.

[1]  Jaheon Kim,et al.  Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[2]  Chongli Zhong,et al.  Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. , 2005, The journal of physical chemistry. B.

[3]  David Dubbeldam,et al.  Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[4]  B. Smit,et al.  Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory. , 2005, The Journal of chemical physics.

[5]  Saeed Amirjalayer,et al.  Molecular dynamics simulation of benzene diffusion in MOF-5: importance of lattice dynamics. , 2007, Angewandte Chemie.

[6]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[7]  C. Serre,et al.  Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. , 2006, Journal of the American Chemical Society.

[8]  Krista S. Walton,et al.  Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1 , 2007 .

[9]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[10]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[11]  G. Férey,et al.  Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO(2) adsorption in the MIL-53 (Al) system. , 2007, Physical chemistry chemical physics : PCCP.

[12]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[13]  B. Smit,et al.  Loading dependence of the diffusion coefficient of methane in nanoporous materials. , 2006, The journal of physical chemistry. B.

[14]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[15]  S. Nguyen,et al.  Prospects for nanoporous metal-organic materials in advanced separations processes , 2004 .

[16]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[17]  Banglin Chen,et al.  Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. , 2006, Inorganic chemistry.

[18]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[19]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[20]  Tatsuo C. Kobayashi,et al.  Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer. , 2005, Angewandte Chemie.

[21]  Chongli Zhong,et al.  Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. , 2006, The journal of physical chemistry. B.

[22]  Mohamed Eddaoudi,et al.  On the mechanism of hydrogen storage in a metal-organic framework material. , 2007, Journal of the American Chemical Society.

[23]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[24]  E Beerdsen,et al.  Molecular understanding of diffusion in confinement. , 2005, Physical review letters.

[25]  A. Skoulidas Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC. , 2004, Journal of the American Chemical Society.

[26]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[27]  Eric J. Hurtado,et al.  A triply interpenetrated microporous metal-organic framework for selective sorption of gas molecules. , 2007, Inorganic chemistry.

[28]  J. Long,et al.  Matrix isolation chemistry in a porous metal-organic framework: photochemical substitutions of N2 and H2 in Zn4O[(eta6-1,4-benzenedicarboxylate)Cr(CO)3]3. , 2008, Journal of the American Chemical Society.

[29]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[30]  David S. Sholl,et al.  Screening metal-organic framework materials for membrane-based methane/carbon dioxide separations , 2007 .

[31]  Wei-Qiao Deng,et al.  Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.

[32]  E. Klontzas,et al.  Molecular Hydrogen Interaction with IRMOF-1: A Multiscale Theoretical Study , 2007 .

[33]  J. Johnson,et al.  Adsorption of gases in metal organic materials: comparison of simulations and experiments. , 2005, The journal of physical chemistry. B.

[34]  Krista S. Walton,et al.  Exceptional negative thermal expansion in isoreticular metal-organic frameworks. , 2007, Angewandte Chemie.

[35]  L. Heroux,et al.  Argon adsorption on Cu3(benzene-1,3,5-tricarboxylate)2(H2O)3 metal-organic framework. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[36]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[37]  Mark D. Allendorf,et al.  The Interaction of Water with MOF-5 Simulated by Molecular Dynamics , 2006 .

[38]  S. Sandler,et al.  Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[39]  Chongli Zhong,et al.  Molecular simulation of separation of CO2 from flue gases in CU‐BTC metal‐organic framework , 2007 .

[40]  B. Smit,et al.  Understanding Diffusion in Nanoporous Materials , 2006 .

[41]  D. Sholl,et al.  Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[42]  Jaheon Kim,et al.  Understanding the mechanism of hydrogen adsorption into metal organic frameworks , 2007 .

[43]  C. Serre,et al.  On the breathing effect of a metal-organic framework upon CO(2) adsorption: Monte Carlo compared to microcalorimetry experiments. , 2007, Chemical communications.

[44]  B. Smit,et al.  Molecular simulation of loading dependent slow diffusion in confined systems. , 2004, Physical review letters.

[45]  Wenbin Lin,et al.  Highly interpenetrated metal-organic frameworks for hydrogen storage. , 2004, Angewandte Chemie.