Evolution of reaction center mimics to systems capable of generating solar fuel

[1]  Neo D. Martinez,et al.  Approaching a state shift in Earth’s biosphere , 2012, Nature.

[2]  T. Moore,et al.  Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation , 2012, Proceedings of the National Academy of Sciences.

[3]  John R. Swierk,et al.  Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator , 2012, Proceedings of the National Academy of Sciences.

[4]  T. Moore,et al.  Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. , 2011, Journal of the American Chemical Society.

[5]  Akihiko Ito,et al.  A historical meta‐analysis of global terrestrial net primary productivity: are estimates converging? , 2011 .

[6]  Danièle Revel,et al.  IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation , 2011 .

[7]  T. Mallouk,et al.  A porphyrin-stabilized iridium oxide water oxidation catalyst , 2011 .

[8]  T. Moore,et al.  Effects of protonation state on a tyrosine-histidine bioinspired redox mediator. , 2010, The journal of physical chemistry. B.

[9]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[10]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[11]  T. Moore,et al.  Multiantenna artificial photosynthetic reaction center complex. , 2009, The journal of physical chemistry. B.

[12]  T. Mallouk,et al.  Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. , 2009, Journal of the American Chemical Society.

[13]  T. Rajh,et al.  A bioinspired construct that mimics the proton coupled electron transfer between P680*+ and the Tyr(Z)-His190 pair of photosystem II. , 2008, Journal of the American Chemical Society.

[14]  Devens Gust,et al.  Self-regulation of photoinduced electron transfer by a molecular nonlinear transducer. , 2008, Nature nanotechnology.

[15]  Fabrice Rappaport,et al.  Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II , 2008 .

[16]  H. Haberl,et al.  Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems , 2007, Proceedings of the National Academy of Sciences.

[17]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[18]  J. Andréasson,et al.  Energy and photoinduced electron transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. , 2006, Journal of the American Chemical Society.

[19]  T. Moore,et al.  Synthesis and photochemistry of a carotene–porphyrin–fullerene model photosynthetic reaction center , 2004 .

[20]  James Barber,et al.  Molecular to global photosynthesis , 2004 .

[21]  A. Rutherford,et al.  Resolving intermediates in biological proton-coupled electron transfer: A tyrosyl radical prior to proton movement , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Thomas A. Moore,et al.  Active transport of Ca2+ by an artificial photosynthetic membrane , 2002, Nature.

[23]  T. Moore,et al.  Efficient energy transfer and electron transfer in an artificial photosynthetic antenna-reaction center complex , 2002 .

[24]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[25]  K. Niyogi,et al.  Non-photochemical quenching. A response to excess light energy. , 2001, Plant physiology.

[26]  T. Moore,et al.  Driving Force and Electronic Coupling Effects on Photoinduced Electron Transfer in a Fullerene-based Molecular Triad¶ , 2000, Photochemistry and photobiology.

[27]  T. Moore,et al.  Photoinduced Electron Transfer in Carotenoporphyrin−Fullerene Triads: Temperature and Solvent Effects , 2000 .

[28]  T. Moore,et al.  An Artificial Photosynthetic Antenna-Reaction Center Complex , 1999 .

[29]  A. Bondeau,et al.  Comparing global models of terrestrial net primary productivity (NPP): overview and key results , 1999 .

[30]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[31]  Thomas A. Moore,et al.  Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane , 1998, Nature.

[32]  A. Moore,et al.  Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad , 1997 .

[33]  Thomas A. Moore,et al.  Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres , 1997, Nature.

[34]  Seiji Taniguchi,et al.  Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C60 Dyads , 1996 .

[35]  P. Horton,et al.  REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. , 1996, Annual review of plant physiology and plant molecular biology.

[36]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[37]  T. Moore,et al.  PREPARATION AND PHOTOPHYSICAL STUDIES OF PORPHYRIN‐C60 DYADS , 1994 .

[38]  T. Moore,et al.  Photoinduced Electron and Energy Transfer in Molecular Pentads. , 1994 .

[39]  Thomas A. Moore,et al.  Molecular mimicry of photosynthetic energy and electron transfer , 1993 .

[40]  L. Makings,et al.  Long-lived photoinitiated charge separation in carotene-diporphyrin triad molecules , 1991 .

[41]  Robert E. Belford,et al.  Efficient Multistep Photoinitiated Electron Transfer in a Molecular Pentad , 1990, Science.

[42]  A. Oldstone Molecular Mimicry , 1989, Current Topics in Microbiology and Immunology.

[43]  L. Makings,et al.  A carotenoid-diporphyrin-quinone model for photosynthetic multistep electron and energy transfer , 1988 .

[44]  L. Makings,et al.  Photoinitiated charge separation in a carotenoid-porphyrin-diquinone tetrad: enhanced quantum yields via multistep electron transfers , 1988 .

[45]  L. Makings,et al.  Charge separation in carotenoporphyrin-quinone triads: synthetic, conformational, and fluorescence lifetime studies , 1987 .

[46]  T. Moore,et al.  Photodriven transmembrane charge separation and electron transfer by a carotenoporphyrin–quinone triad , 1985, Nature.

[47]  T. Moore,et al.  Photodriven charge separation in a carotenoporphyrin–quinone triad , 1984, Nature.

[48]  R. Walgate Mimicking photosynthesis. , 1984, Microbiological sciences.

[49]  B. C. Hicks,et al.  The future of energy supply , 1966, IEEE Spectrum.

[50]  R. Berliner Active Transport , 1964, Physiology for physicians.