Understanding local deformation in metallic polycrystals using high energy X-rays and finite elements

[1]  V. Vítek Computer simulation of the screw dislocation motion in b. c. c. metals under the effect of the external shear and uniaxial stresses , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  H. Bunge Texture Analysis in Materials Science , 1982 .

[3]  J. Keith Nisbett,et al.  Shigley's Mechanical Engineering Design , 1983 .

[4]  J. Christian Some surprising features of the plastic deformation of body-centered cubic metals and alloys , 1983 .

[5]  H. Wenk Preferred orientation in deformed metals and rocks : an introduction to modern texture analysis , 1985 .

[6]  P. Dawson,et al.  Modeling crystallographic texture evolution with finite elements over neo-Eulerian orientation spaces , 1998 .

[7]  D. Dunand,et al.  Synchrotron X-ray study of bulk lattice strains in externally loaded Cu-Mo composites , 2000 .

[8]  H. Prask,et al.  A comparison of neutron and ultrasonic determinations of residual stress , 2000 .

[9]  Yandong Wang,et al.  A novel method for constructing the mean field of grain-orientation-dependent residual stress , 2001 .

[10]  Nathan R. Barton,et al.  Pole Figure Inversion Using Finite Elements Over Rodrigues Space , 2002 .

[11]  Henning Friis Poulsen,et al.  Three-Dimensional X-Ray Diffraction Microscopy , 2004 .

[12]  Matthew P. Miller,et al.  A direct method for the determination of the mean orientation-dependent elastic strains and stresses in polycrystalline materials from strain pole figures , 2006 .

[13]  M. Miller,et al.  A novel optimization-based pole-figure inversion method: comparison with WIMV and maximum entropy methods , 2006 .

[14]  V. Vitek,et al.  Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2〈1 1 1〉 screw dislocations at 0 K , 2008 .

[15]  P. Dawson,et al.  Measuring and modeling distributions of stress state in deforming polycrystals , 2008 .

[16]  P. Dawson,et al.  A method for measuring single-crystal elastic moduli using high-energy X-ray diffraction and a crystal-based finite element model , 2010 .

[17]  M. Miller,et al.  A Mechanical Testing Capability for Measuring the Microscale Deformation Behavior of Structural Materials , 2012 .

[18]  N. Barton,et al.  A method for intragranular orientation and lattice strain distribution determination , 2012 .

[19]  John L. Sarrao,et al.  From Quanta to the Continuum: Opportunities for Mesoscale Science , 2012 .

[20]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[21]  P. Dawson,et al.  A framework for generating synthetic diffraction images from deforming polycrystals using crystal-based finite element formulations , 2013 .

[22]  P. Dawson,et al.  A computational framework for evaluating residual stress distributions from diffraction-based lattice strain data , 2013 .

[23]  P. Dawson,et al.  Quantifying Three-Dimensional Residual Stress Distributions Using Spatially-Resolved Diffraction Measurements and Finite Element Based Data Reduction , 2013 .

[24]  Matthew P. Miller,et al.  A two-scale methodology for determining the residual stresses in polycrystalline solids using high energy X-ray diffraction data , 2013 .

[25]  P. Dawson,et al.  Quantitative analysis of crystal scale deformation heterogeneity during cyclic plasticity using high-energy X-ray diffraction and finite-element simulation , 2014 .

[26]  P. Dawson,et al.  Integrating experiments and simulations to estimate uncertainty in lattice strain measurements , 2014 .

[27]  Matthew P. Miller,et al.  Stress and deformation heterogeneity in individual grains within polycrystals subjected to fully reversed cyclic loading , 2015 .