Time-dependent ion selectivity in capacitive charging of porous electrodes.

[1]  D. Aurbach,et al.  Selective adsorption of multivalent ions into TiC-derived nanoporous carbon , 2012 .

[2]  Marek Bryjak,et al.  Effect of electrode thickness variation on operation of capacitive deionization , 2012 .

[3]  P. M. Biesheuvel,et al.  Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes , 2012, Russian Journal of Electrochemistry.

[4]  P. M. Biesheuvel,et al.  Water Desalination with Wires. , 2012, Journal of Physical Chemistry Letters.

[5]  Gang Wang,et al.  Activated carbon nanofiber webs made by electrospinning for capacitive deionization , 2012 .

[6]  Linda Zou,et al.  A study of the capacitive deionisation performance under various operational conditions. , 2012, Journal of hazardous materials.

[7]  Zhiyong Ren,et al.  Sustainable desalination using a microbial capacitive desalination cell , 2012 .

[8]  Yury Gogotsi,et al.  Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors , 2012 .

[9]  Feiyu Kang,et al.  Relation between the charge efficiency of activated carbon fiber and its desalination performance. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[10]  P. M. Biesheuvel,et al.  Water desalination using capacitive deionization with microporous carbon electrodes. , 2012, ACS applied materials & interfaces.

[11]  Zhuo Sun,et al.  Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization , 2012 .

[12]  Yi Cui,et al.  A desalination battery. , 2012, Nano letters.

[13]  Stephan Gekle,et al.  Dielectric profile of interfacial water and its effect on double-layer capacitance. , 2011, Physical review letters.

[14]  G. Sposito,et al.  Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions. , 2011, Journal of colloid and interface science.

[15]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[16]  P. M. Biesheuvel,et al.  Theory of membrane capacitive deionization including the effect of the electrode pore space. , 2011, Journal of colloid and interface science.

[17]  Linda Zou,et al.  Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination , 2011 .

[18]  Jeong-Ik Lee,et al.  Development of a two-dimensional coupled-implicit numerical tool for the optimal design of CDI electrodes , 2011 .

[19]  Ruxandra Vidu,et al.  Solar Energy Storage Methods , 2011 .

[20]  P. M. Biesheuvel,et al.  Diffuse charge and Faradaic reactions in porous electrodes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  E. Wang,et al.  Nanostructured materials for water desalination , 2011, Nanotechnology.

[22]  A. Muto,et al.  Very low temperature membrane-free desalination by directional solvent extraction , 2011 .

[23]  P. M. Biesheuvel,et al.  Two-fluid model for the simultaneous flow of colloids and fluids in porous media. , 2011, Journal of colloid and interface science.

[24]  D. Aurbach,et al.  The effect of specific adsorption of cations and their size on the charge-compensation mechanism in carbon micropores: the role of anion desorption. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Juergen Biener,et al.  Advanced carbon aerogels for energy applications , 2011 .

[26]  A. Travesset,et al.  Ion-specific induced charges at aqueous soft interfaces. , 2011, Physical review letters.

[27]  H. Strathmann Electrodialysis, a mature technology with a multitude of new applications , 2010 .

[28]  Doron Aurbach,et al.  EQCM as a unique tool for determination of ionic fluxes in microporous carbons as a function of surface charge distribution , 2010 .

[29]  M. Soestbergen,et al.  Theory of aluminum metallization corrosion in microelectronics , 2010 .

[30]  T. Baumann,et al.  Electrocapillary maximum and potential of zero charge of carbon aerogel. , 2010, Physical chemistry chemical physics : PCCP.

[31]  Marc A. Anderson,et al.  Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? , 2010 .

[32]  Bobby G. Sumpter,et al.  Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. , 2010, ACS nano.

[33]  Seung-Hyeon Moon,et al.  Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. , 2010, Water research.

[34]  Sung Jae Kim,et al.  Direct seawater desalination by ion concentration polarization. , 2010, Nature nanotechnology.

[35]  Jae-Hwan Choi,et al.  Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer. , 2010, Water research.

[36]  P. M. Biesheuvel,et al.  Membrane capacitive deionization , 2010 .

[37]  P. M. Biesheuvel,et al.  Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization , 2010 .

[38]  Erik L. G. Wernersson,et al.  Charge Inversion and Ion−Ion Correlation Effects at the Mercury/Aqueous MgSO4 Interface: Toward the Solution of a Long-Standing Issue , 2010 .

[39]  P. M. Biesheuvel,et al.  Nonlinear dynamics of capacitive charging and desalination by porous electrodes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  M. Bazant,et al.  Strongly nonlinear dynamics of electrolytes in large ac voltages. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Benny D. Freeman,et al.  Reverse osmosis desalination: water sources, technology, and today's challenges. , 2009, Water research.

[42]  P. M. Biesheuvel,et al.  Thermodynamic cycle analysis for capacitive deionization. , 2009, Journal of colloid and interface science.

[43]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[44]  P. M. Biesheuvel,et al.  Dynamic Adsorption/Desorption Process Model for Capacitive Deionization , 2009 .

[45]  C. Tsouris,et al.  Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores. , 2008, The Journal of chemical physics.

[46]  Zhuo Sun,et al.  Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. , 2008, Water research.

[47]  Raphael Semiat,et al.  Energy issues in desalination processes. , 2008, Environmental science & technology.

[48]  Pei Xu,et al.  Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. , 2008, Water research.

[49]  D. Aurbach,et al.  Developing Ion Electroadsorption Stereoselectivity, by Pore Size Adjustment with Chemical Vapor Deposition onto Active Carbon Fiber Electrodes. Case of Ca2+/Na+ Separation in Water Capacitive Desalination , 2008 .

[50]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[51]  Suzanne A Pierce,et al.  The energy challenge , 2008, Nature.

[52]  M. Murad,et al.  A dual-porosity model for ionic solute transport in expansive clays , 2008 .

[53]  P. M. Biesheuvel,et al.  Counterion volume effects in mixed electrical double layers. , 2007, Journal of colloid and interface science.

[54]  Chi-Woo Lee,et al.  Desalination of a thermal power plant wastewater by membrane capacitive deionization , 2006 .

[55]  G. Brezesinski,et al.  Breakdown of the Gouy-Chapman model for highly charged Langmuir monolayers: counterion size effect. , 2006, The journal of physical chemistry. B.

[56]  B. Bayly,et al.  Current-Voltage Relations for Electrochemical Thin Films , 2004, SIAM J. Appl. Math..

[57]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  T. D. Tran,et al.  Electrosorption of inorganic salts from aqueous solution using carbon aerogels. , 2002, Environmental science & technology.

[59]  J. Gilman,et al.  Nanotechnology , 2001 .

[60]  B. Kastening,et al.  The double layer of activated carbon electrodes: Part 1. The contribution of ions in the pores , 1994 .

[61]  R. Goldbery,et al.  SEDCODE: a FORTRAN 77 program for decoding sedimentological field data , 1984 .

[62]  H. Elderfield,et al.  The rare earth elements in seawater , 1982, Nature.

[63]  John Newman,et al.  Desalting by Means of Porous Carbon Electrodes , 1971 .

[64]  C. A. Barlow,et al.  Theory of Double-Layer Differential Capacitance in Electrolytes , 1962 .

[65]  R. Parsons,et al.  The diffuse double layer in mixed electrolytes , 1961 .

[66]  D. Grahame Diffuse Double Layer Theory for Electrolytes of Unsymmetrical Valence Types , 1953 .

[67]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[68]  M. L. Teijelo,et al.  Electrochimica Acta , 2014 .

[69]  Joseph C. Farmer,et al.  Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes , 1996 .

[70]  Water Research , 1961, Nature.

[71]  E. Lieb,et al.  Physical Review Letters , 1958, Nature.