High-temperature antiferromagnetism in Yb based heavy fermion systems proximate to a Kondo insulator

Given the parallelism between the physical properties of Ce and Yb based magnets and heavy fermions due to the electron-hole symmetry, it has been rather odd that the transition temperature of the Yb based compounds is normally very small, as low as ∼ 1 K or even lower, whereas Ce counterparts may often have the transition temperature well exceeding 10 K. Here, we report our experimental discovery of the transition temperature reaching 20 K for the first time in a Yb based compound at ambient pressure. The Mn substitution at the Al site in an intermediate valence state of α -YbAlB 4 not only induces antiferromagnetic transition at a record high temperature of 20 K but also transforms the heavy fermion liquid state in α -YbAlB 4 into a highly resistive metallic state proximate to a Kondo insulator.

[1]  T. Ishikawa,et al.  Quantum valence criticality in a correlated metal , 2018, Science Advances.

[2]  Takeshi Kondo,et al.  Evidence for magnetic Weyl fermions in a correlated metal. , 2017, Nature materials.

[3]  S. Nakatsuji,et al.  High Magnetic Transition Temperature and Semiconductor-like Transport Properties of Mn-doped α-YbAlB4 , 2016 .

[4]  David Abend,et al.  The Kondo Problem To Heavy Fermions , 2016 .

[5]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[6]  P. Coleman,et al.  Strange metal without magnetic criticality , 2015, Science.

[7]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[8]  S. Nakatsuji,et al.  High Pressure Measurements of the Resistivity of β-YbAlB4 , 2015, 1501.03852.

[9]  Su-Yang Xu,et al.  An inversion breaking Weyl semimetal state in the TaAs material class , 2015 .

[10]  Z. Fisk,et al.  Quantum Oscillations in Kondo Insulator SmB$_6$ , 2013, 1306.5221.

[11]  Z. Fisk,et al.  Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6 , 2013, Nature Communications.

[12]  Z. Fisk,et al.  Visualizing heavy fermions emerging in a quantum critical Kondo lattice , 2012, Nature.

[13]  C. Krellner,et al.  Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2 , 2011, Nature.

[14]  T. Mori,et al.  f-electron dependence of the physical properties of REAlB4; an AlB2-type analogous “tiling” compound , 2011 .

[15]  P. Coleman,et al.  Quantum Criticality Without Tuning in the Mixed Valence Compound β-YbAlB4 , 2011, Science.

[16]  I. Sakamoto,et al.  Transport and magnetic properties of new heavy-fermion antiferromagnet YbNi3Al9 , 2011 .

[17]  G. Luke,et al.  Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2 , 2010, Nature.

[18]  R. Kobayashi,et al.  Semiconducting behavior in CeFe2Al10 and CeRu2Al10 single crystals , 2010 .

[19]  M. Kim,et al.  A new unconventional antiferromagnet, Yb3Pt4 , 2008, 0806.1943.

[20]  Z. Fisk,et al.  Superconductivity and quantum criticality in the heavy-fermion system |[beta]|-YbAlB4 , 2008 .

[21]  Philipp Gegenwart,et al.  Quantum criticality in heavy-fermion metals , 2007, 0712.2045.

[22]  S. Imada,et al.  Observation of bulk electronic states of Kondo semiconductor YbB12 by high-resolution soft X-ray photoemission spectroscopy , 2007 .

[23]  A. V. Goltsev,et al.  Origin of the pressure dependence of the Kondo temperature in Ce- and Yb-based heavy-fermion compounds , 2005 .

[24]  C. Geibel,et al.  Observation of Two Distinct Superconducting Phases in CeCu2Si2 , 2003, Science.

[25]  K. Müller,et al.  Interaction of superconductivity and magnetism in borocarbide superconductors , 2001 .

[26]  N. Wingreen,et al.  Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance , 1998, Science.

[27]  M. Springford The Kondo problem to heavy fermions , 1993 .

[28]  P. Weidner,et al.  Magnetic ordering of mixed valent Yb3Pd4 , 1985 .

[29]  P. Convert,et al.  Magnetic structure of the compound CeIn3 , 1980 .