Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET

Abstract. This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

[1]  U. Wandinger,et al.  Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign , 2015 .

[2]  Grigorii P. Kokhanenko,et al.  Development of photodetectors for recording lidar signals in the photon counting and analog modes , 2015, Atmospheric and Ocean Optics.

[3]  V. Freudenthaler,et al.  EARLINET instrument intercomparison campaigns: overview on strategy and results , 2015 .

[4]  L. Alados-Arboledas,et al.  Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event , 2015 .

[5]  L. Mona,et al.  A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals , 2015 .

[6]  D. Nicolae,et al.  Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. , 2014, The Science of the total environment.

[7]  Oleg Dubovik,et al.  GRASP: a versatile algorithm for characterizing the atmosphere , 2014 .

[8]  V. Freudenthaler,et al.  EARLINET: towards an advanced sustainable European aerosol lidar network , 2014 .

[9]  A. Ansmann,et al.  Retrieving aerosol microphysical properties by Lidar‐Radiometer Inversion Code (LIRIC) for different aerosol types , 2014 .

[10]  Doina Nicolae,et al.  Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations , 2013 .

[11]  José María Baldasano Recio,et al.  Application of a synergetic lidar and sunphotometer algorithm for the characterization of a dust event over Athens, Greece , 2013 .

[12]  A. Stohl,et al.  Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajokull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements , 2013 .

[13]  D. Tanré,et al.  Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm , 2013 .

[14]  P. Seifert,et al.  Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust , 2013 .

[15]  Benjamin Thomas,et al.  Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix , 2013 .

[16]  Albert Ansmann,et al.  Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations. , 2013, Applied optics.

[17]  T. Nakajima,et al.  Development of a new data-processing method for SKYNET sky radiometer observations , 2012 .

[18]  P. Seifert,et al.  Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes , 2012 .

[19]  Charles A. Trepte,et al.  Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust , 2012 .

[20]  A. Stohl,et al.  Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010 , 2012 .

[21]  Albert Ansmann,et al.  Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010 , 2011 .

[22]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[23]  P. D. Girolamo,et al.  APPLICATION OF RANDOMLY ORIENTED SPHEROIDS FORRETRIEVAL OF DUST PARTICLE PARAMETERS FROM MULTIWAVELENGTH LIDAR MEASUREMENTS , 2010 .

[24]  Josef Gasteiger,et al.  Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements , 2010 .

[25]  A. Doicu,et al.  Numerical Regularization for Atmospheric Inverse Problems , 2010 .

[26]  K. Strawbridge,et al.  Californian forest fire plumes over Southwestern British Columbia: lidar, sunphotometry, and mountaintop chemistry observations , 2010 .

[27]  V. Freudenthaler,et al.  The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany , 2010 .

[28]  Zhengqiang Li,et al.  Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements , 2009 .

[29]  V. Ramaswamy,et al.  Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: Comparison with other measurements and utilization to evaluate GCM output , 2009 .

[30]  Albert Ansmann,et al.  Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 , 2009 .

[31]  V. Ramaswamy,et al.  Retrieving the composition and concentration of aerosols over the Indo‐Gangetic basin using CALIOP and AERONET data , 2009 .

[32]  R. Engelmann,et al.  Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest , 2009 .

[33]  Juan Cuesta,et al.  Synergetic technique combining elastic backscatter lidar data and sunphotometer AERONET inversion for retrieval by layer of aerosol optical and microphysical properties. , 2008, Applied optics.

[34]  L. Mona,et al.  Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .

[35]  Max Frioud,et al.  Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006 , 2007 .

[36]  A. Pietruczuk,et al.  Properties of fire smoke in Eastern Europe measured by remote sensing methods , 2007, SPIE Remote Sensing.

[37]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[38]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[39]  K. Strawbridge,et al.  Trans‐Pacific transport of Saharan dust to western North America: A case study , 2007 .

[40]  Alexander Smirnov,et al.  Aeronet's Version 2.0 quality assurance criteria , 2006, SPIE Asia-Pacific Remote Sensing.

[41]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[42]  D. Müller,et al.  Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis. , 2005, Applied optics.

[43]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[44]  B. Holben,et al.  Studying Altitude Profiles of Atmospheric Aerosol Parameters by Combined Multi-Wavelength LIDAR and Sun Sky Radiance Measurements , 2004 .

[45]  Mark R. Schoeberl,et al.  Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties , 2004 .

[46]  Philippe Goloub,et al.  Methodology and sample results of retrieving aerosol parameters by combined multiwavelength lidar and Sun-sky scanning measurements , 2004, Atmospheric and Ocean Optics.

[47]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004, Applied optics.

[48]  Albert Ansmann,et al.  Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer , 2003 .

[49]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[50]  Oleg Dubovik,et al.  Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .

[51]  Brent N. Holben,et al.  Methodology to retrieve atmospheric aerosol parameters by combining ground-based measurements of multiwavelength lidar and sun sky-scanning radiometer , 2002, Atmospheric and Ocean Optics.

[52]  Hester Volten,et al.  Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm , 2001 .

[53]  J. Biele,et al.  Polarization Lidar: Correction of instrumental effects. , 2000, Optics express.

[54]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[55]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[56]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[57]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[58]  Kengo Iokibe,et al.  Lidar network observation of Asian dust (Kosa) in Japan , 1998, Asia-Pacific Environmental Remote Sensing.

[59]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[60]  M. McCormick,et al.  Methodology for error analysis and simulation of lidar aerosol measurements. , 1979, Applied optics.

[61]  Valentin F. Turchin,et al.  The use of mathematical-statistics methods in the solution of incorrectly posed problems , 1971 .

[62]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[63]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[64]  Michaël Sicard,et al.  Algorithm and software for the retrieval of vertical aerosol properties using combined lidar/radiometer data: dissemination in EARLINET , 2012 .

[65]  Comissão Nacional de Energia,et al.  LIDAR COMMUNITY IN LATIN AMERICA: A DECADE OF CHALLENGES AND SUCCESSES , 2012 .

[66]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[67]  V. Freudenthaler,et al.  EARLI09 - DIRECT INTERCOMPARISON OF ELEVEN EARLINET LIDAR SYSTEMS , 2009 .

[68]  Oleg Dubovik,et al.  Optimization of Numerical Inversion in Photopolarimetric Remote Sensing , 2004 .

[69]  ProblemsPer Christian HansenDepartment The L-curve and its use in the numerical treatment of inverse problems , 2000 .

[70]  Larry D. Travis,et al.  Light Scattering by Nonspherical Particles , 1998 .

[71]  S. Twomey Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1997 .

[72]  J. Barnett,et al.  Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0 - 120 km , 1990 .

[73]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[74]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[75]  J. Greenberg Scattering by Nonspherical Particles , 1960 .

[76]  J. Biele Polarization lidar : Corrections of instrumental effects , 2022 .