Neutral Vlasov kinetic theory of magnetized plasmas

The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This limit produces a neutral Vlasov system that captures essential features of plasma dynamics, while neglecting radiation effects. Euler-Poincare reduction theory is used to show that the neutral Vlasov kinetic theory possesses a variational formulation in both Lagrangian and Eulerian coordinates. By construction, the new model recovers all collisionless neutral models employed in plasma simulations. Then, comparisons between the neutral Vlasov system and hybrid kinetic-fluid models are presented in the linear regime.

[1]  A. Matthews,et al.  Current Advance Method and Cyclic Leapfrog for 2D Multispecies Hybrid Plasma Simulations , 1994 .

[2]  Giovanni Lapenta,et al.  Particle simulations of space weather , 2012, J. Comput. Phys..

[3]  Robert G. Littlejohn,et al.  Variational principles of guiding centre motion , 1983, Journal of Plasma Physics.

[4]  F. Low,et al.  A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  P. J. Morrisonb Hamiltonian and action principle formulations of plasma physics a ... , 2005 .

[6]  E. Camporeale,et al.  Vlasov simulations of kinetic Alfvén waves at proton kinetic scales , 2014, 1409.0618.

[7]  M. Hesse,et al.  Hybrid simulations of collisionless ion tearing , 1993 .

[8]  C. Tronci A Lagrangian kinetic model for collisionless magnetic reconnection , 2012, 1208.5674.

[9]  P. Morrison,et al.  Hybrid Vlasov-MHD models: Hamiltonian vs. non-Hamiltonian , 2014, 1403.2773.

[10]  J. Freidberg Ideal magnetohydrodynamic theory of magnetic fusion systems , 1982 .

[11]  Luis Chacón,et al.  An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm , 2013, Comput. Phys. Commun..

[12]  C. Tronci Hamiltonian approach to hybrid plasma models , 2010 .

[13]  Dan Winske,et al.  Hybrid and Hall‐MHD simulations of collisionless reconnection: Dynamics of the electron pressure tensor , 2001 .

[14]  Alexander S. Lipatov,et al.  The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas , 2010 .

[15]  W. Park,et al.  Plasma simulation studies using multilevel physics models , 1999 .

[16]  L. Yin,et al.  Hybrid Simulation Codes: Past, Present and Future—A Tutorial , 2003 .

[17]  A. Brizard,et al.  New variational principle for the Vlasov-Maxwell equations. , 2000, Physical review letters.

[18]  H. Qin,et al.  The Hamiltonian structure and Euler-Poincaré formulation of the Vlasov-Maxwell and gyrokinetic systems , 2013, 1301.6066.

[19]  C. Darwin,et al.  LI. The dynamical motions of charged particles , 1920 .

[20]  Rizwan-uddin,et al.  Parsek2D: An Implicit Parallel Particle-in-Cell Code , 2009 .

[21]  角 正雄,et al.  T.H.Stix: The Theory of Plasma Waves, McGraw-Hill Company, New York 1962, 283頁, 16×24cm, 3,900円. , 1964 .

[22]  Darryl D. Holm,et al.  Euler-Poincare Formulation Of Hybrid Plasma Models , 2010, 1012.0999.

[23]  Darryl D. Holm,et al.  The Maxwell–Vlasov equations in Euler–Poincaré form , 1998, chao-dyn/9801016.

[24]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[25]  H. Qin,et al.  The Hamiltonian Structure and Euler-Poincare Formulation of the Valsov-Maxwell and Gyrokinetic System , 2012 .

[26]  Chio Cheng,et al.  A kinetic‐fluid model , 1999 .

[27]  C. Cheng A kinetic‐magnetohydrodynamic model for low‐frequency phenomena , 1991 .

[28]  A. Wurm,et al.  Action principles for extended magnetohydrodynamic models , 2014, 1407.3884.

[29]  Fabrice Deluzet,et al.  Numerical approximation of the Euler-Maxwell model in the quasineutral limit , 2011, J. Comput. Phys..

[30]  Petr Hellinger,et al.  A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma , 2007, J. Comput. Phys..