Neutral Vlasov kinetic theory of magnetized plasmas
暂无分享,去创建一个
[1] A. Matthews,et al. Current Advance Method and Cyclic Leapfrog for 2D Multispecies Hybrid Plasma Simulations , 1994 .
[2] Giovanni Lapenta,et al. Particle simulations of space weather , 2012, J. Comput. Phys..
[3] Robert G. Littlejohn,et al. Variational principles of guiding centre motion , 1983, Journal of Plasma Physics.
[4] F. Low,et al. A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[5] P. J. Morrisonb. Hamiltonian and action principle formulations of plasma physics a ... , 2005 .
[6] E. Camporeale,et al. Vlasov simulations of kinetic Alfvén waves at proton kinetic scales , 2014, 1409.0618.
[7] M. Hesse,et al. Hybrid simulations of collisionless ion tearing , 1993 .
[8] C. Tronci. A Lagrangian kinetic model for collisionless magnetic reconnection , 2012, 1208.5674.
[9] P. Morrison,et al. Hybrid Vlasov-MHD models: Hamiltonian vs. non-Hamiltonian , 2014, 1403.2773.
[10] J. Freidberg. Ideal magnetohydrodynamic theory of magnetic fusion systems , 1982 .
[11] Luis Chacón,et al. An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm , 2013, Comput. Phys. Commun..
[12] C. Tronci. Hamiltonian approach to hybrid plasma models , 2010 .
[13] Dan Winske,et al. Hybrid and Hall‐MHD simulations of collisionless reconnection: Dynamics of the electron pressure tensor , 2001 .
[14] Alexander S. Lipatov,et al. The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas , 2010 .
[15] W. Park,et al. Plasma simulation studies using multilevel physics models , 1999 .
[16] L. Yin,et al. Hybrid Simulation Codes: Past, Present and Future—A Tutorial , 2003 .
[17] A. Brizard,et al. New variational principle for the Vlasov-Maxwell equations. , 2000, Physical review letters.
[18] H. Qin,et al. The Hamiltonian structure and Euler-Poincaré formulation of the Vlasov-Maxwell and gyrokinetic systems , 2013, 1301.6066.
[19] C. Darwin,et al. LI. The dynamical motions of charged particles , 1920 .
[20] Rizwan-uddin,et al. Parsek2D: An Implicit Parallel Particle-in-Cell Code , 2009 .
[21] 角 正雄,et al. T.H.Stix: The Theory of Plasma Waves, McGraw-Hill Company, New York 1962, 283頁, 16×24cm, 3,900円. , 1964 .
[22] Darryl D. Holm,et al. Euler-Poincare Formulation Of Hybrid Plasma Models , 2010, 1012.0999.
[23] Darryl D. Holm,et al. The Maxwell–Vlasov equations in Euler–Poincaré form , 1998, chao-dyn/9801016.
[24] Darryl D. Holm,et al. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.
[25] H. Qin,et al. The Hamiltonian Structure and Euler-Poincare Formulation of the Valsov-Maxwell and Gyrokinetic System , 2012 .
[26] Chio Cheng,et al. A kinetic‐fluid model , 1999 .
[27] C. Cheng. A kinetic‐magnetohydrodynamic model for low‐frequency phenomena , 1991 .
[28] A. Wurm,et al. Action principles for extended magnetohydrodynamic models , 2014, 1407.3884.
[29] Fabrice Deluzet,et al. Numerical approximation of the Euler-Maxwell model in the quasineutral limit , 2011, J. Comput. Phys..
[30] Petr Hellinger,et al. A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma , 2007, J. Comput. Phys..