THE HERSCHEL AND JCMT GOULD BELT SURVEYS: CONSTRAINING DUST PROPERTIES IN THE PERSEUS B1 CLUMP WITH PACS, SPIRE, AND SCUBA-2

We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-2 science verification observations from the JCMT Gould Belt Survey of the B1 clump in the Perseus molecular cloud. We determined the dust emissivity index using four different techniques to combine the Herschel PACS+SPIRE data at 160–500 μm with the SCUBA-2 data at 450 μm and 850 μm. Of our four techniques, we found that the most robust method was filtering out the large-scale emission in the Herschel bands to match the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method, we find β ≈ 2 toward the filament region and moderately dense material and lower β values (β ≳ 1.6) toward the dense protostellar cores, possibly due to dust grain growth. We find that β and temperature are more robust with the inclusion of the SCUBA-2 data, improving estimates from Herschel data alone by factors of ∼2 for β and by ∼40% for temperature. Furthermore, we find core mass differences of ≲ 30% compared to Herschel-only estimates with an adopted β = 2, highlighting the necessity of long-wavelength submillimeter data for deriving accurate masses of prestellar and protostellar cores.

[1]  D. Thilker,et al.  The Herschel exploitation of local galaxy andromeda (HELGA): IV. Dust scaling relations at sub-kpc resolution , 2014, 1403.4272.

[2]  P. Andre',et al.  HERSCHEL OBSERVATIONS OF THE W3 GMC (II): CLUES TO THE FORMATION OF CLUSTERS OF HIGH-MASS STARS , 2013, 1301.3805.

[3]  P. Andre',et al.  CHANGES OF DUST OPACITY WITH DENSITY IN THE ORION A MOLECULAR CLOUD , 2012, 1211.6475.

[4]  J. Richer,et al.  The JCMT Gould Belt Survey: SCUBA-2 observations of radiative feedback in NGC 1333 , 2012, 1210.5094.

[5]  H'elene Roussel,et al.  Scanamorphos: A Map-making Software for Herschel and Similar Scanning Bolometer Arrays , 2012, 1205.2576.

[6]  A. Giorgio,et al.  Herschel observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud , 2012, 1209.5290.

[7]  Douglas Scott,et al.  A new era of wide-field submillimetre imaging: on-sky performance of SCUBA-2 , 2012, Other Conferences.

[8]  D. Johnstone,et al.  Molecular line contamination in the SCUBA-2 450 and 850 μm continuum data , 2012, 1204.6180.

[9]  A. Goodman,et al.  DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE , 2012, 1203.0025.

[10]  Peter G. Martin,et al.  Evolution of dust in the Orion Bar with Herschel , 2012, 1202.1624.

[11]  M. Halpern,et al.  EVIDENCE FOR ENVIRONMENTAL CHANGES IN THE SUBMILLIMETER DUST OPACITY , 2011, 1112.5433.

[12]  N. Peretto,et al.  Herschel Observations of a Potential Core-Forming Clump: Perseus B1-E , 2011, 1111.7021.

[13]  N. Evans,et al.  OBSERVATIONAL CONSTRAINTS ON SUBMILLIMETER DUST OPACITY , 2010, 1012.3488.

[14]  M. Lombardi,et al.  DEEP NEAR-INFRARED SURVEY OF THE PIPE NEBULA. II. DATA, METHODS, AND DUST EXTINCTION MAPS , 2010, 1011.1490.

[15]  P. Bernardis,et al.  Variations of the spectral index of dust emissivity from Hi-GAL observations of the Galactic plane , 2010, 1009.2779.

[16]  Peter G. Martin,et al.  Dust temperature tracing the ISRF intensity in the Galaxy , 2010 .

[17]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[18]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[19]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[20]  P. Ade,et al.  PROPERTIES OF GALACTIC CIRRUS CLOUDS OBSERVED BY BOOMERanG , 2009, 0907.5012.

[21]  J. Foster,et al.  THE DUST EMISSIVITY SPECTRAL INDEX IN THE STARLESS CORE TMC-1C , 2009, 0911.0892.

[22]  T. Jenness,et al.  HARP/ACSIS: a submillimetre spectral imaging system on the James Clerk Maxwell Telescope , 2009, 0907.3610.

[23]  A. Goodman,et al.  THE EFFECT OF LINE-OF-SIGHT TEMPERATURE VARIATION AND NOISE ON DUST CONTINUUM OBSERVATIONS , 2009, 0902.3477.

[24]  A. Goodman,et al.  THE EFFECT OF NOISE ON THE DUST TEMPERATURE–SPECTRAL INDEX CORRELATION , 2009, 0902.0636.

[25]  N. Evans,et al.  PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS , 2008, 0809.4012.

[26]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[27]  Bonn,et al.  MAMBO Mapping Of Spitzer c2d Small Clouds And Cores , 2008, 0805.4205.

[28]  D. Johnstone,et al.  Current Star Formation in the Ophiuchus and Perseus Molecular Clouds: Constraints and Comparisons from Unbiased Submillimeter and Mid-Infrared Surveys. II. , 2008, 0805.0599.

[29]  J. Foster,et al.  An Ammonia Spectral Atlas of Dense Cores in Perseus , 2007, 0711.0231.

[30]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[31]  A. Whitworth,et al.  The James Clerk Maxwell Telescope Legacy Survey of Nearby Star‐forming Regions in the Gould Belt , 2007, 0707.0169.

[32]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[33]  D. Paradis,et al.  Far-infrared to millimeter astrophysical dust emission. I. A model based on physical properties of a , 2007, astro-ph/0701226.

[34]  D. Johnstone,et al.  Current Star Formation in the Perseus Molecular Cloud: Constraints from Unbiased Submillimeter and Mid-Infrared Surveys , 2006, astro-ph/0610381.

[35]  G. Fuller,et al.  Star formation in Perseus: II. SEDs, classification and lifetimes , 2006, astro-ph/0612601.

[36]  E. Bergin,et al.  The Rotating Molecular Core and Precessing Outflow of the Young Stellar Object Barnard 1c , 2006, astro-ph/0609590.

[37]  F. Bensch,et al.  A KOSMA 7 deg$\mathsf{^{2}}$ $\mathsf{^{13}}$CO 2–1 and $\mathsf{^{12}}$CO 3–2 survey of the Perseus cloud - I. Structure analysis , 2006 .

[38]  A. Walsh,et al.  Millimetre continuum observations of southern massive star formation regions – II. SCUBA observations of cold cores and the dust grain emissivity index (β) , 2006, astro-ph/0602294.

[39]  D. Johnstone,et al.  The Large- and Small-Scale Structures of Dust in the Star-forming Perseus Molecular Cloud , 2006, astro-ph/0602089.

[40]  D. Johnstone,et al.  Fourier transform spectroscopy of the submillimetre continuum emission from hot molecular cores , 2005, astro-ph/0505331.

[41]  D. Johnstone,et al.  Astrochemistry of sub-millimeter sources in Orion. Studying the variations of molecular tracers with changing physical conditions , 2003, astro-ph/0310166.

[42]  G. White,et al.  A spectral survey of the Orion Nebula from 455-507 GHz , 2003 .

[43]  J. Bernard,et al.  Inverse temperature dependence of the dust submillimeter spectral index , 2003, astro-ph/0310091.

[44]  M. Kenworthy,et al.  The Structure and Evolution of the Lagoon Nebula. I. Submillimeter Continuum and CO Line Mapping , 2002 .

[45]  M. Mccaughrean,et al.  Observations of a curving molecular outflow from V380 Ori-NE: further support for prompt entrainment in protostellar outflows , 2000 .

[46]  Hilo,et al.  SCUBA: A Common - user submillimetre camera operating on the James Clerk Maxwell telescope , 1998, astro-ph/9809122.

[47]  E. Serabyn,et al.  350 Micron Continuum Imaging of the Orion A Molecular Cloud with the Submillimeter High Angular Resolution Camera , 1998 .

[48]  T. Henning,et al.  Dust opacities in dense regions , 1995 .

[49]  S. Doty,et al.  A critical evaluation of semianalytic methods in the study of centrally heated, unresolved, infrared sources , 1994 .

[50]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[51]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[52]  P. Schwartz The spectral dependence of dust emissivity at millimeter wavelengths , 1982 .