A unified formalism for many-body polarization and dispersion: The quantum Drude model applied to fluid xenon

In order to model both the full many-body polarization and dispersion interactions in atomic and molecular systems, a system of quantized Drude oscillators is introduced. The quantization is carried out using imaginary-time path integration, leading to an O(N) simulation method. As a test case, the model is parameterized for xenon, and is shown to give quantitative agreement with experiment over a broad range of thermodynamic state points.

[1]  M. A. Hoef,et al.  Comparison between integral equation method and molecular dynamics simulation for three-body forces: Application to supercritical argon , 2001 .

[2]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[3]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[4]  P. Certain,et al.  Bounds to two- and three-body long-range interaction coefficients for S-state atoms , 1985 .

[5]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[6]  B. Berne,et al.  Many‐body dispersion forces of polarizable clusters and liquids , 1992 .

[7]  P. Drude Lehrbuch der Optik , 1900 .

[8]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[9]  J. A. Barker,et al.  Interatomic potentials for krypton and xenon , 1974 .

[10]  H. Jónsson,et al.  Molecular multipole moments of water molecules in ice Ih , 1998 .

[11]  Lawrence R. Pratt,et al.  Effective field of a dipole in non-polar polarizable fluids , 1980 .

[12]  Barker Many-body interactions in rare gases: Krypton and xenon. , 1986, Physical review letters.

[13]  K. Jordan,et al.  A Drude-model approach to dispersion interactions in dipole-bound anions , 2001 .

[14]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[15]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[16]  J. Kirkwood,et al.  Drude‐Model Calculation of Dispersion Forces. II. The Linear Lattice , 1957 .

[17]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[18]  Leslie Greengard,et al.  A renormalization method for the evaluation of lattice sums , 1994 .

[19]  Michiel Sprik,et al.  A polarizable model for water using distributed charge sites , 1988 .

[20]  M. Dixon,et al.  Interionic potentials in alkali halides and their use in simulations of the molten salts , 1976 .

[21]  Richard J. Sadus,et al.  Molecular simulation of the phase behavior of noble gases using accurate two-body and three-body intermolecular potentials , 1999 .

[22]  M. Klein,et al.  Hydrogen bonding in water. , 2003, Physical review letters.

[23]  D. Ceperley,et al.  Simulation of quantum many-body systems by path-integral methods , 1984 .

[24]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[25]  Frank H. Stillinger,et al.  Polarization model for water and its ionic dissociation products , 1978 .

[26]  D. Tobias,et al.  Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols , 2000, Science.

[27]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[28]  I. Zucker,et al.  Higher order multipole three-body van der Waals interactions and stability of rare gas solids , 1971 .

[29]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .