Some extended Wirtinger's inequalities and distributed proportional-spatial integral control of distributed parameter systems with multi-time delays

Abstract In this paper, the framework of Lyapunov–Krasovskii functional for dealing with the problem of stability analysis and synthesis for time-delay systems is extended to address the problem of the time-delay distributed proportional-spatial integral (P-sI) control design for a class of linear distributed parameter systems with multi-time delays described by partial differential-integral equations (PDIEs). Initially, some extended Wirtinger׳s inequalities are presented based on the classic scalar Wirtinger׳s ones. Both delay-independent and delay-dependent design methods are subsequently developed by constructing integral types of Lyapunov–Krasovskii functional candidates and using the extended Wirtinger׳s inequality, and presented in terms of standard linear matrix inequality (LMI). Finally, the effectiveness and merit of the proposed control methodologies is demonstrated by a numerical example.

[1]  Serge Nicaise,et al.  Stability and Instability Results of the Wave Equation with a Delay Term in the Boundary or Internal Feedbacks , 2006, SIAM J. Control. Optim..

[2]  G. Sallet,et al.  Exponential Stability and Transfer Functions of Processes Governed by Symmetric Hyperbolic Systems , 2002 .

[3]  Xin Xin,et al.  Sufficient Conditions for Exponential Stabilization of Linear Distributed Parameter Systems with Time Delays , 2014 .

[4]  Han-Xiong Li,et al.  Fuzzy Boundary Control Design for a Class of Nonlinear Parabolic Distributed Parameter Systems , 2014, IEEE Transactions on Fuzzy Systems.

[5]  Kun Liu,et al.  Wirtinger's inequality and Lyapunov-based sampled-data stabilization , 2012, Autom..

[6]  Guanrong Chen,et al.  Spectral-approximation-based intelligent modeling for distributed thermal processes , 2005, IEEE Transactions on Control Systems Technology.

[7]  Feiqi Deng,et al.  LMI Approach to Exponential Stabilization of Distributed Parameter Control Systems with Delay: LMI Approach to Exponential Stabilization of Distributed Parameter Control Systems with Delay , 2009 .

[8]  Radhakant Padhi,et al.  An account of chronological developments in control of distributed parameter systems , 2009, Annu. Rev. Control..

[9]  Qing-Long Han,et al.  Absolute stability of time-delay systems with sector-bounded nonlinearity , 2005, Autom..

[10]  Lacra Pavel,et al.  Lyapunov-Based Boundary Control for A Class of Hyperbolic Lotka–Volterra Systems , 2012, IEEE Transactions on Automatic Control.

[11]  Tingxiu Wang Stability in Abstract Functional Differential Equations. Part II. Applications , 1994 .

[12]  Frédéric Gouaisbaut,et al.  Wirtinger-based integral inequality: Application to time-delay systems , 2013, Autom..

[13]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[14]  Tingxiu Wang,et al.  Stability in Abstract Functional Differential Equations. Part I. General Theorems , 1994 .

[15]  Cheng Ly,et al.  Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons , 2009, PLoS Comput. Biol..

[16]  Arkadi Nemirovski,et al.  Lmi Control Toolbox For Use With Matlab , 2014 .

[17]  M. Kim Synthesis of linear optimum distributed parameter systems with time delays , 1974 .

[18]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[19]  Alexandre Seuret,et al.  Jensen's and Wirtinger's Inequalities for Time-Delay Systems , 2013, TDS.

[20]  X. Mao,et al.  Robust stability of uncertain stochastic differential delay equations , 1998 .

[21]  João Pedro Hespanha,et al.  A Survey of Recent Results in Networked Control Systems , 2007, Proceedings of the IEEE.

[22]  Emilia Fridman,et al.  Robust sampled-data control of a class of semilinear parabolic systems , 2012, Autom..

[23]  Feiqi Deng,et al.  LMI Approach to Exponential Stabilization of Distributed Parameter Control Systems with Delay , 2009 .

[24]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[25]  F. Gouaisbaut,et al.  DELAY-DEPENDENT ROBUST STABILITY OF TIME DELAY SYSTEMS , 2006 .

[26]  Miroslav Krstic,et al.  Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations , 2004, IEEE Transactions on Automatic Control.

[27]  P. Wang,et al.  Optimum control of distributed parameter systems with time delays , 1964 .

[28]  Emilia Fridman,et al.  Stability and passivity analysis of semilinear diffusion PDEs with time-delays , 2015, Int. J. Control.

[29]  F. Gouaisbaut,et al.  DELAY-DEPENDENT STABILITY ANALYSIS OF LINEAR TIME DELAY SYSTEMS , 2006 .

[30]  Georges Bastin,et al.  A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws , 2004, CDC.

[31]  Malcolm R. Davidson,et al.  A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants , 2009, PLoS Comput. Biol..

[32]  A. Nayfeh,et al.  Dynamic analysis of variable-geometry electrostatic microactuators , 2006 .

[33]  John Baillieul Linearized models for the control of rotating beams , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[34]  Yong He,et al.  Delay-dependent criteria for robust stability of time-varying delay systems , 2004, Autom..

[35]  Kun Liu,et al.  Stability of linear systems with general sawtooth delay , 2010, IMA J. Math. Control. Inf..

[36]  Emilia Fridman,et al.  Exponential stability of linear distributed parameter systems with time-varying delays , 2009, Autom..

[37]  钟 庆昌 Robust Control of Time-delay Systems , 2006 .

[38]  Johan Nilsson,et al.  Real-Time Control Systems with Delays , 1998 .

[39]  Frédéric Gouaisbaut,et al.  On the Use of the Wirtinger Inequalities for Time-Delay Systems , 2012, TDS.

[40]  Huai-Ning Wu,et al.  Distributed proportional plus second-order spatial derivative control for distributed parameter systems subject to spatiotemporal uncertainties , 2014 .

[41]  Costas J. Spanos,et al.  Advanced process control , 1989 .