A new clustering method for detecting rare senses of abbreviations in clinical notes

[1]  Hua Xu,et al.  Detecting abbreviations in discharge summaries using machine learning methods. , 2011, AMIA ... Annual Symposium proceedings. AMIA Symposium.

[2]  Carol Friedman,et al.  Methods for Building Sense Inventories of Abbreviations in Clinical Notes , 2008, AMIA.

[3]  John F. Hurdle,et al.  Extracting Information from Textual Documents in the Electronic Health Record: A Review of Recent Research , 2008, Yearbook of Medical Informatics.

[4]  J. Sheppard,et al.  Ambiguous abbreviations: an audit of abbreviations in paediatric note keeping , 2007, Archives of Disease in Childhood.

[5]  Carol Friedman,et al.  A Study of Abbreviations in Clinical Notes , 2007, AMIA.

[6]  Neil R. Smalheiser,et al.  ADAM: another database of abbreviations in MEDLINE , 2006, Bioinform..

[7]  J. Berman Pathology abbreviated: a long review of short terms. , 2009, Archives of pathology & laboratory medicine.

[8]  Hongfang Liu,et al.  Research Paper: A Multi-aspect Comparison Study of Supervised Word Sense Disambiguation , 2004, J. Am. Medical Informatics Assoc..

[9]  Eytan Adar,et al.  SaRAD: a Simple and Robust Abbreviation Dictionary , 2004, Bioinform..

[10]  Anderson Spickard,et al.  Research Paper: "Understanding" Medical School Curriculum Content Using KnowledgeMap , 2003, J. Am. Medical Informatics Assoc..

[11]  Russ B. Altman,et al.  Research Paper: Creating an Online Dictionary of Abbreviations from MEDLINE , 2002, J. Am. Medical Informatics Assoc..

[12]  Daniel A. Keim,et al.  Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , 2002, KDD.

[13]  Patrick Pantel,et al.  Discovering word senses from text , 2002, KDD.

[14]  Serguei V. S. Pakhomov Semi-Supervised Maximum Entropy Based Approach to Acronym and Abbreviation Normalization in Medical Texts , 2002, ACL.

[15]  George Hripcsak,et al.  The sublanguage of cross-coverage , 2002, AMIA.

[16]  Wendy W. Chapman,et al.  A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries , 2001, J. Biomed. Informatics.

[17]  Hongfang Liu,et al.  Evaluating the UMLS as a source of lexical knowledge for medical language processing , 2001, AMIA.

[18]  Hongfang Liu,et al.  A study of abbreviations in the UMLS , 2001, AMIA.

[19]  Alan R. Aronson,et al.  Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program , 2001, AMIA.

[20]  Carol Friedman,et al.  A broad-coverage natural language processing system , 2000, AMIA.

[21]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[22]  Hinrich Schütze,et al.  Automatic Word Sense Discrimination , 1998, Comput. Linguistics.

[23]  Ted Pedersen,et al.  Distinguishing Word Senses in Untagged Text , 1997, EMNLP.

[24]  David Yarowsky,et al.  One Sense per Collocation , 1993, HLT.

[25]  Susan McRoy,et al.  Using Multiple Knowledge Sources for Word Sense Discrimination , 1992, Comput. Linguistics.

[26]  David Yarowsky,et al.  One Sense Per Discourse , 1992, HLT.

[27]  G. Miller,et al.  Contextual correlates of semantic similarity , 1991 .

[28]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .