Estimating anatomical trajectories with Bayesian mixed-effects modeling

We introduce a mass-univariate framework for the analysis of whole-brain structural trajectories using longitudinal Voxel-Based Morphometry data and Bayesian inference. Our approach to developmental and aging longitudinal studies characterizes heterogeneous structural growth/decline between and within groups. In particular, we propose a probabilistic generative model that parameterizes individual and ensemble average changes in brain structure using linear mixed-effects models of age and subject-specific covariates. Model inversion uses Expectation Maximization (EM), while voxelwise (empirical) priors on the size of individual differences are estimated from the data. Bayesian inference on individual and group trajectories is realized using Posterior Probability Maps (PPM). In addition to parameter inference, the framework affords comparisons of models with varying combinations of model order for fixed and random effects using model evidence. We validate the model in simulations and real MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We further demonstrate how subject specific characteristics contribute to individual differences in longitudinal volume changes in healthy subjects, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD).

[1]  N. Raz,et al.  Differential Aging of the Brain: Patterns, Cognitive Correlates and Modifiers , 2022 .

[2]  Joseph B. Martin Huntington's disease , 1984, Neurology.

[3]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[4]  Paul M. Thompson,et al.  Fast and accurate modelling of longitudinal and repeated measures neuroimaging data , 2014, NeuroImage.

[5]  Bruce Fischl,et al.  Avoiding asymmetry-induced bias in longitudinal image processing , 2011, NeuroImage.

[6]  Karl J. Friston,et al.  Posterior probability maps and SPMs , 2003, NeuroImage.

[7]  Cheryl L. Dahle,et al.  Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. , 2005, Cerebral cortex.

[8]  Nick C. Fox,et al.  Gray matter atrophy rate as a marker of disease progression in AD , 2012, Neurobiology of Aging.

[9]  D. Louis Collins,et al.  Bayesian Classification of Multiple Sclerosis Lesions in Longitudinal MRI Using Subtraction Images , 2010, MICCAI.

[10]  N. Schuff,et al.  Relations between brain tissue loss, CSF biomarkers, and the ApoE genetic profile: a longitudinal MRI study , 2010, Neurobiology of Aging.

[11]  Nick C Fox,et al.  Change in rates of cerebral atrophy over time in early-onset Alzheimer's disease: longitudinal MRI study , 2003, The Lancet.

[12]  Karl J. Friston,et al.  Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation , 2011, NeuroImage.

[13]  Chris Frost,et al.  The analysis of repeated ‘direct’ measures of change illustrated with an application in longitudinal imaging , 2004, Statistics in medicine.

[14]  Benjamin Thyreau,et al.  A longitudinal study of the relationship between personality traits and the annual rate of volume changes in regional gray matter in healthy adults , 2013, Human brain mapping.

[15]  William D. Penny,et al.  Comparing Dynamic Causal Models using AIC, BIC and Free Energy , 2012, NeuroImage.

[16]  Sébastien Ourselin,et al.  Head size, age and gender adjustment in MRI studies: a necessary nuisance? , 2010, NeuroImage.

[17]  Jean-Claude Baron,et al.  Early diagnosis of alzheimer’s disease: contribution of structural neuroimaging , 2003, NeuroImage.

[18]  Richard S. Frackowiak,et al.  Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ) , 2011, NeuroImage.

[19]  A. Dale,et al.  Critical ages in the life course of the adult brain: nonlinear subcortical aging , 2013, Neurobiology of Aging.

[20]  C. DeCarli,et al.  Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline , 2011, Alzheimer's & Dementia.

[21]  Mert R. Sabuncu,et al.  Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models , 2013, NeuroImage.

[22]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[23]  Gerard R. Ridgway,et al.  Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects , 2014, NeuroImage.

[24]  Mert R. Sabuncu,et al.  Spatiotemporal Linear Mixed Effects Modeling for the Mass-univariate Analysis of Longitudinal Neuroimage Data ⁎ for the Alzheimer's Disease Neuroimaging Initiative 1 , 2022 .

[25]  Thomas E. Nichols,et al.  Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment , 2013, Proceedings of the National Academy of Sciences.

[26]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[27]  L. Jäncke,et al.  Brain structural trajectories over the adult lifespan , 2012, Human brain mapping.

[28]  Christos Davatzikos,et al.  Dynamic Bayesian network modeling for longitudinal brain morphometry , 2012, NeuroImage.

[29]  C. Grady The cognitive neuroscience of ageing , 2012, Nature Reviews Neuroscience.

[30]  Sébastien Ourselin,et al.  Consistent multi-time-point brain atrophy estimation from the boundary shift integral , 2012, NeuroImage.

[31]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.

[32]  Nick C Fox,et al.  Increased hippocampal atrophy rates in AD over 6 months using serial MR imaging , 2008, Neurobiology of Aging.

[33]  Anders M. Dale,et al.  Nonlinear registration of longitudinal images and measurement of change in regions of interest , 2011, Medical Image Anal..

[34]  Armin Raznahan,et al.  How Does Your Cortex Grow? , 2011, The Journal of Neuroscience.

[35]  S. Resnick,et al.  Longitudinal pattern of regional brain volume change differentiates normal aging from MCI , 2009, Neurology.

[36]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[37]  Heping Zhang,et al.  Multiscale Adaptive Marginal Analysis of Longitudinal Neuroimaging Data with Time‐Varying Covariates , 2012, Biometrics.

[38]  Ulman Lindenberger,et al.  Trajectories of brain aging in middle-aged and older adults: Regional and individual differences , 2010, NeuroImage.

[39]  R. Berman,et al.  Longitudinal four-dimensional mapping of subcortical anatomy in human development , 2014, Proceedings of the National Academy of Sciences.

[40]  Alan C. Evans,et al.  Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. , 2004, Cerebral cortex.

[41]  Dinggang Shen,et al.  Multiscale Adaptive Generalized Estimating Equations for Longitudinal Neuroimaging Data ☆ , 2022 .

[42]  G. Molenberghs,et al.  Longitudinal data analysis , 2008 .

[43]  U. Lindenberger,et al.  Only time will tell: cross-sectional studies offer no solution to the age-brain-cognition triangle: comment on Salthouse (2011). , 2011, Psychological bulletin.

[44]  Christian Buechel,et al.  Acquisition-related morphological variability in structural MRI. , 2006, Academic radiology.

[45]  Wiro J. Niessen,et al.  Vascular risk factors, apolipoprotein E, and hippocampal decline on magnetic resonance imaging over a 10-year follow-up , 2012, Alzheimer's & Dementia.

[46]  C. Jack,et al.  Longitudinal MRI atrophy biomarkers: Relationship to conversion in the ADNI cohort , 2010, Neurobiology of Aging.

[47]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[48]  Jennifer C. Britton,et al.  Linear mixed-effects modeling approach to FMRI group analysis , 2013, NeuroImage.

[49]  C. Jack,et al.  Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) , 2005, Alzheimer's & Dementia.

[50]  Owen Carmichael,et al.  Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. , 2010, Archives of neurology.

[51]  Nick C Fox,et al.  A data-driven model of biomarker changes in sporadic Alzheimer's disease , 2014, Alzheimer's & Dementia.

[52]  Christos Davatzikos,et al.  Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment , 2012, NeuroImage.

[53]  Nick C Fox,et al.  The clinical use of structural MRI in Alzheimer disease , 2010, Nature Reviews Neurology.

[54]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[55]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[56]  S. Resnick,et al.  One-year age changes in MRI brain volumes in older adults. , 2000, Cerebral cortex.

[57]  Michael Weiner,et al.  Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease , 2009, Annals of neurology.

[58]  Gerard R. Ridgway,et al.  Symmetric Diffeomorphic Modeling of Longitudinal Structural MRI , 2013, Front. Neurosci..

[59]  Thomas H. B. FitzGerald,et al.  Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging , 2014, Neurobiology of Aging.

[60]  Sebastien Ourselin,et al.  Cerebral atrophy in mild cognitive impairment and Alzheimer disease , 2013, Neurology.

[61]  Hélène Jacqmin-Gadda,et al.  Estimating long-term multivariate progression from short-term data , 2014, Alzheimer's & Dementia.

[62]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[63]  William D. Penny,et al.  Bayesian model selection maps for group studies , 2009, NeuroImage.

[64]  Mark W. Woolrich,et al.  Bayesian inference in FMRI , 2012, NeuroImage.

[65]  Richard S. J. Frackowiak,et al.  Regional speci fi city of MRI contrast parameter changes in normal ageing revealed by voxel-based quanti fi cation ( VBQ ) , 2011 .

[66]  P. Murali Doraiswamy,et al.  Mapping the effect of the apolipoprotein E genotype on 4-year atrophy rates in an Alzheimer disease-related brain network. , 2014, Radiology.

[67]  J. Mcardle Latent variable modeling of differences and changes with longitudinal data. , 2009, Annual review of psychology.

[68]  Mert R. Sabuncu,et al.  Event time analysis of longitudinal neuroimage data , 2014, NeuroImage.

[69]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[70]  Thomas H. B. FitzGerald,et al.  Characterizing Aging in the Human Brainstem Using Quantitative Multimodal MRI Analysis , 2013, Front. Hum. Neurosci..

[71]  Bruce Fischl,et al.  Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.

[72]  Andrew Saykin,et al.  Exploring the nexus of Alzheimer's disease and related dementias with cancer and cancer therapies: A convening of the Alzheimer's Association & Alzheimer's Drug Discovery Foundation , 2017, Alzheimer's & Dementia.

[73]  Guang-Zhong Yang,et al.  A Bayesian hierarchical model for the analysis of a longitudinal dynamic contrast‐enhanced MRI oncology study , 2007, Magnetic resonance in medicine.

[74]  L. Nyberg,et al.  Brain Characteristics of Individuals Resisting Age-Related Cognitive Decline over Two Decades , 2013, The Journal of Neuroscience.

[75]  Jonathan E. Taylor,et al.  Empirical null and false discovery rate analysis in neuroimaging , 2009, NeuroImage.

[76]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[77]  William D. Penny,et al.  Efficient Posterior Probability Mapping Using Savage-Dickey Ratios , 2013, PloS one.

[78]  Anders M. Dale,et al.  Rates of Decline in Alzheimer Disease Decrease with Age , 2012, PloS one.

[79]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[80]  A. Dale,et al.  Accelerating cortical thinning: unique to dementia or universal in aging? , 2014, Cerebral cortex.

[81]  Michael W. Weiner,et al.  APOE-epsilon4 and aging of medial temporal lobe gray matter in healthy adults older than 50 years , 2014, Neurobiology of Aging.

[82]  Karl J. Friston,et al.  Post hoc Bayesian model selection , 2011, NeuroImage.

[83]  S. Resnick,et al.  Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype , 2000, Neurology.

[84]  Abderrahim Oulhaj,et al.  Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial , 2010, PloS one.

[85]  Johannes Kornhuber,et al.  APOE-dependent phenotypes in subjects with mild cognitive impairment converting to Alzheimer's disease. , 2013, Journal of Alzheimer's disease : JAD.

[86]  Ulrich Ettinger,et al.  Effects of acute dehydration on brain morphology in healthy humans , 2009, Human brain mapping.

[87]  Christos Davatzikos,et al.  Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI , 2009, NeuroImage.

[88]  Xavier Pennec,et al.  Efficient Parallel Transport of Deformations in Time Series of Images: From Schild’s to Pole Ladder , 2013, Journal of Mathematical Imaging and Vision.

[89]  C R Jack,et al.  Serial MRI and CSF biomarkers in normal aging, MCI, and AD , 2010, Neurology.

[90]  K. Walhovd,et al.  Structural Brain Changes in Aging: Courses, Causes and Cognitive Consequences , 2010, Reviews in the neurosciences.

[91]  Sébastien Ourselin,et al.  An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease , 2012, NeuroImage.

[92]  Jerry L. Prince,et al.  A computational neurodegenerative disease progression score: Method and results with the Alzheimer's disease neuroimaging initiative cohort , 2012, NeuroImage.

[93]  Alan C. Evans,et al.  Intellectual ability and cortical development in children and adolescents , 2006, Nature.

[94]  Ruth A. Carper,et al.  Longitudinal Magnetic Resonance Imaging Study of Cortical Development through Early Childhood in Autism , 2010, The Journal of Neuroscience.

[95]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[96]  Christian Gaser,et al.  Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents , 2013, NeuroImage.

[97]  Marc Tittgemeyer,et al.  Positional Brain Deformation Visualized With Magnetic Resonance Morphometry , 2010, Neurosurgery.

[98]  J. Lerch,et al.  Patterns of Coordinated Anatomical Change in Human Cortical Development: A Longitudinal Neuroimaging Study of Maturational Coupling , 2011, Neuron.

[99]  Alan C. Evans,et al.  Longitudinal neuroanatomical changes determined by deformation-based morphometry in a mouse model of Alzheimer's disease , 2008, NeuroImage.