Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems

A residual-type a posteriori error estimator is introduced and analyzed for a discontinuous Galerkin formulation of a model second-order elliptic problem with Dirichlet-Neumann-type boundary conditions. An adaptive algorithm using this estimator together with specific marking and refinement strategies is constructed and shown to achieve any specified error level in the energy norm in a finite number of cycles. The convergence rate is in effect linear with a guaranteed error reduction at every cycle. Results of numerical experiments are presented.

[1]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[2]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[3]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[4]  Dinesh Manocha,et al.  Applied Computational Geometry Towards Geometric Engineering , 1996, Lecture Notes in Computer Science.

[5]  S. Nicaise,et al.  Anisotropic a posteriori error estimation for the mixed discontinuous Galerkin approximation of the Stokes problem , 2006 .

[6]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[7]  Rolf Rannacher,et al.  Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems , 2002, J. Num. Math..

[8]  Mary F. Wheeler,et al.  A Posteriori error estimates for a discontinuous galerkin method applied to elliptic problems. Log number: R74 , 2003 .

[9]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[10]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[11]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[12]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[13]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[14]  O. Karakashian ADAPTIVE DISCONTINUOUS GALERKIN APPROXIMATIONS OF SECOND-ORDER ELLIPTIC PROBLEMS , 2004 .

[15]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[16]  Paul Castillo An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method , 2005, J. Sci. Comput..

[17]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .

[18]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[21]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[22]  Peter Hansbo,et al.  Energy norm a posteriori error estimation for discontinuous Galerkin methods , 2003 .

[23]  Bernardo Cockburn,et al.  An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method Applied to Linear and Nonlinear Diffusion Problems , 2005, J. Sci. Comput..