Higher-order sliding modes, differentiation and output-feedback control

Being a motion on a discontinuity set of a dynamic system, sliding mode is used to keep accurately a given constraint and features theoretically-infinite-frequency switching. Standard sliding modes provide for finite-time convergence, precise keeping of the constraint and robustness with respect to internal and external disturbances. Yet the relative degree of the constraint has to be 1 and a dangerous chattering effect is possible. Higher-order sliding modes preserve or generalize the main properties of the standard sliding mode and remove the above restrictions. r-Sliding mode realization provides for up to the rth order of sliding precision with respect to the sampling interval compared with the first order of the standard sliding mode. Such controllers require higher-order real-time derivatives of the outputs to be available. The lacking information is achieved by means of proposed arbitrary-order robust exact differentiators with finite-time convergence. These differentiators feature optimal asymptotics with respect to input noises and can be used for numerical differentiation as well. The resulting controllers provide for the full output-feedback real-time control of any output variable of an uncertain dynamic system, if its relative degree is known and constant. The theoretical results are confirmed by computer simulation.

[1]  A. Levant,et al.  Higher order sliding modes and arbitrary-order exact robust differentiation , 2001, 2001 European Control Conference (ECC).

[2]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[3]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[4]  Arie Levant,et al.  Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence , 2001, IEEE Trans. Autom. Control..

[5]  Arie Levant,et al.  ARBITRARY-ORDER SLIDING MODES WITH FINITE TIME CONVERGENCE , 1999 .

[6]  Xinghuo Yu,et al.  Nonlinear derivative estimator , 1996 .

[7]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[8]  A. Levant UNIVERSAL OUTPUT-FEEDBACK SISO CONTROLLER , 2002 .

[9]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[10]  A. Levant Universal SISO sliding-mode controllers with finite-time convergence , 2001 .

[11]  Panagiotis D. Christofides,et al.  Control of Nonlinear Systems with Uncertainty , 2005 .

[12]  H. K. Khalil,et al.  Numerical differentiation using high-gain observers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[13]  Hakan Elmali,et al.  Robust output tracking control of nonlinear MIMO systems via sliding mode technique , 1992, Autom..

[14]  Yaodong Pan,et al.  Variable structure control with sliding sector , 2000, Autom..

[15]  Antonella Ferrara,et al.  On multi-input second order sliding mode control of nonlinear systems with uncertainty , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[16]  Alan S. I. Zinober,et al.  DYNAMICAL ADAPTIVE SLIDING MODE OUTPUT TRACKING CONTROL OF A CLASS OF NONLINEAR SYSTEMS , 1997 .

[17]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[18]  A. Levant Controlling output variables via higher order sliding modes , 1999, 1999 European Control Conference (ECC).

[19]  I. A. Shkolnikov,et al.  2-sliding mode control for nonlinear plants with parametric and dynamic uncertainties , 2000 .

[20]  H. Sira-Ramírez On the dynamical sliding mode control of nonlinear systems , 1993 .

[21]  A. Isidoria,et al.  A note on the problem of semiglobal practical stabilization of uncertain nonlinear systems via dynamic output feedback , 2000 .

[22]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[23]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[24]  A. N. Atassi,et al.  Separation results for the stabilization of nonlinear systems using different high-gain observer designs ☆ , 2000 .

[25]  Wu-Chung Su,et al.  Implementation of variable structure control for sampled-data systems , 1996 .

[26]  Sarah K. Spurgeon,et al.  OUTPUT TRACKING USING DYNAMIC SLIDING MODE TECHNIQUES , 1997 .

[27]  Giorgio Bartolini,et al.  First and second derivative estimation by sliding mode technique , 2000 .

[28]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[29]  Antonella Ferrara,et al.  On second order sliding mode controllers , 1998 .

[30]  H. Kwatny,et al.  Variable Structure Control , 2000 .

[31]  J. W. Modestino,et al.  Adaptive Control , 1998 .

[32]  G. Bartolini,et al.  Chattering avoidance by second-order sliding mode control , 1998, IEEE Trans. Autom. Control..

[33]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.