The thermodynamic properties of biphenyl

Abstract Ideal-gas thermodynamic properties for biphenyl based on calorimetric measurements were determined between 300 and 700 K, well into the range of typical chemical-process temperatures. Experimental methods included adiabatic heat-capacity calorimetry, comparative ebulliometry, inclined-piston manometry, and differential-scanning calorimetry (d.s.c.). The derived values provide a firm basis for the prediction of thermodynamic properties for a large family of molecular structures including many substituted biphenyls—such as polychlorinated biphenyls (PCBs)—as well as polyphenyls of arbitrary size. Results also highlighted ambiguities common in the statistical calculation of thermodynamic properties of polycyclic molecules. Critical-property measurements with a d.s.c. indicated the commonly accepted assessed values to be in error. The biphenyl critical properties serve as a “cornerstone” in group-contribution estimation schemes, which are employed often by engineers in corresponding-states correlations for the estimation of a great variety of physical properties. Thermodynamically consistent sublimation vapor pressures were derived to show which of the many literature values are valid, an essential step in the validation of the many reported PCB vapor-pressure measurements, which are key to environmental-impact considerations.

[1]  R. Chirico,et al.  High-temperature heat-capacity measurements and critical property determinations using a Differential Scanning Calorimeter: Results of measurements on toluene, tetralin, and JP-10 , 1989 .

[2]  R. Newton,et al.  The Specific Heat of Liquid Diphenyl , 1931 .

[3]  M. Farcasiu Fractionation and structural characterization of coal liquids , 1977 .

[4]  S. Mraw,et al.  Heat capacities and enthalpies of fusion of dibenzothiophene (220 to 560 K) and of biphenyl, cyclohexylbenzene, and cyclohexylcyclohexane (220 to 475 K) Enthalpies and temperatures of three transitions in solid cyclohexylcyclohexane , 1983 .

[5]  E. Cox Hydrocarbon Vapor Pressures , 1936 .

[6]  C. G. Frye Equilibria in the Hydrogenation of Polycyclic Aromatics. , 1962 .

[7]  F. McCrackin,et al.  Simple calibration procedures for platinum resistance thermometers from 2.5 to 14 K , 1975 .

[8]  W. D. Good,et al.  The enthalpies of formation of selected naphthalenes, diphenylmethanes, and bicyclic hydrocarbons☆☆☆ , 1976 .

[9]  E. Brugmann,et al.  The Specific Heat of Diphenyl , 1931 .

[10]  J. Hales,et al.  Liquid densities from 293 to 490 K of nine aromatic hydrocarbons , 1972 .

[11]  F. Rossini,et al.  Enthalpies of combustion, vaporization, and formation of phenylbenzene, cyclohexylbenzene, and cyclohexylcyclohexane; enthalpy of hydrogenation of certain aromatic systems , 1978 .

[12]  R. S. Bradley,et al.  349. The vapour pressure and lattice energy of some aromatic ring compounds , 1953 .

[13]  E. Lippincott,et al.  The vibrational spectra and geometrical configuration of biphenyl , 1959 .

[14]  J. Chipman,et al.  Vapor Pressure and Heat of Vaporization of Diphenyl , 1929 .

[15]  R. M. Barrett,et al.  The vibrational spectra and dihedral angles of biphenyl and the 4,4'-dihalogenobiphenyls , 1972 .

[16]  AiharaAriyuki Estimation of the Energy of Hydrogen Bonds Formed in Crystals. I. Sublimation Pressures of Some Organic Molecular Crystals and the Additivity of Lattice Energy , 1959 .

[17]  G. S. Parks,et al.  Some Heat-Capacity Data on Organic Compounds obtained with a Radiation Calorimeter , 1931 .

[18]  D. R. Douslin,et al.  2,2,3,3-tetramethylbutane: heat capacity, heats of transition, fusion, and sublimation, vapor pressure, entropy, and thermodynamic functions , 1952 .

[19]  G. Pilcher,et al.  Heats of combustion of biphenyl, bibenzyl, naphthalene, anthracene and phenanthrene , 1966 .

[20]  P. O'hare,et al.  A high-precision aneroid semi-micro combustion calorimeter , 1963 .

[21]  S. J. Cyvin,et al.  Structure and barrier of internal rotation of biphenyl derivatives in the gaseous state: Part 1. The molecular structure and normal coordinate analysis of normal biphenyl and pedeuterated biphenyl , 1985 .

[22]  H. M. Huffman,et al.  THERMAL DATA ON ORGANIC COMPOUNDS. VII. THE HEAT CAPACITIES, ENTROPIES AND FREE ENERGIES OF TWELVE AROMATIC HYDROCARBONS1 , 1930 .

[23]  Michael A. Wilson,et al.  Hydrogenation of Liddell coal. Yields and mean chemical structures of the products , 1980 .

[24]  D. R. Stull JANAF thermochemical tables , 1966 .

[25]  R. Chirico,et al.  The vapor pressure of n-alkanes revisited. New high-precision vapor pressure data on n-decane, n-eicosane, and n-octacosane , 1989 .

[26]  M. Kakihana,et al.  Internal rotation of biphenyl in solution studied by IR and NMR spectra , 1986 .

[27]  L. Burkhard,et al.  Vapor pressures for biphenyl, 4-chlorobiphenyl, 2,2',3,3',5,5',6,6'-octachlorobiphenyl, and decachlorobiphenyl , 1984 .

[28]  S. Mraw,et al.  The measurement of accurate heat capacities by differential scanning calorimetry Comparison of d.s.c. results on pyrite (100 to 800 K) with literature values from precision adiabatic calorimetry , 1979 .

[29]  G. S. Parks,et al.  The Heat of Combustion of Biphenyl , 1951 .

[30]  H. M. Huffman Low-temperature calorimetry at the Bartlesville Station of the Bureau of Mines. , 1947, Chemical reviews.

[31]  K. Sasse,et al.  Tension de vapeur d'hydrocarbures polyaromatiques dans le domaine 10-3–10 Torr , 1989 .

[32]  D. R. Douslin,et al.  Pressure measurements in the 0.01-30 torr range with an inclined-piston gauge , 1965 .

[33]  L. Rollmann Catalytic hydrogenation of model nitrogen, sulfur, and oxygen compounds , 1977 .

[34]  R. Kobayashi,et al.  Development of an apparatus to measurement vapor pressures at high temperatures and its application to three higher-boiling compounds , 1980 .

[35]  N. Holden,et al.  Atomic weights of the elements 1981 , 1983 .

[36]  A. Sapre,et al.  Hydrogenation of biphenyl catalyzed by sulfided cobalt monoxide-molybdenum trioxide-aluminum trioxide. The reaction kinetics , 1982 .

[37]  B. Gates,et al.  Chemistry of catalytic processes , 1979 .

[38]  L. A. Carreira,et al.  Raman spectra and barriers to internal rotation: biphenyl and nitrobenzene , 1977 .

[39]  Kazuya Saito,et al.  Incommensurate phase transitions and anomalous lattice heat capacities of biphenyl , 1988 .

[40]  E. D. West,et al.  Enthalpy and Heat-Capacity Standard Reference Material: Synthetic Sapphire (α-Al2O3) from 10 to 2250 K. , 1982, Journal of research of the National Bureau of Standards.

[41]  F. Glaser,et al.  Untersuchungen über Dampfdruckkurven und kritische Daten einiger technisch wichtiger organischer Substanzen , 1957 .

[42]  D. R. Douslin,et al.  Vapor pressure relations of 36 sulfur compounds present in petroleum , 1966 .

[43]  A. Sapre,et al.  Hydrogenation of aromatic hydrocarbons catalyzed by sulfided cobalt oxide-molybdenum oxide/.alpha.-aluminum oxide. Reactivities and reaction networks , 1981 .

[44]  J. Katzer,et al.  Process and Catalyst Needs for Hydrodenitrogenation , 1980 .

[45]  S. Mastrangelo,et al.  Solid Solutions Treatment of Calorimetric Purity Data , 1955 .

[46]  Ernst Morawetz,et al.  Enthalpies of vaporization for a number of aromatic compounds , 1972 .

[47]  Robert F. Curl,et al.  The Volumetric and Thermodynamic Properties of Fluids. III. Empirical Equation for the Second Virial Coefficient1 , 1957 .

[48]  E. R. Cohen,et al.  The 1986 CODATA Recommended Values Of the Fundamental Physical Constants , 1987, Journal of Research of the National Bureau of Standards.