Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1

[1]  M. Santoro,et al.  An α-Smooth Muscle Actin (acta2/αsma) Zebrafish Transgenic Line Marking Vascular Mural Cells and Visceral Smooth Muscle Cells , 2014, PloS one.

[2]  David J. Arenillas,et al.  JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles , 2013, Nucleic Acids Res..

[3]  P. Currie,et al.  503unc, a small and muscle‐specific zebrafish promoter , 2013, Genesis.

[4]  S. Sumanas,et al.  Arterial and venous progenitors of the major axial vessels originate at distinct locations. , 2013, Developmental cell.

[5]  S. Morrison,et al.  Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches , 2013, Nature.

[6]  D. Link,et al.  CXCL12 Production by Early Mesenchymal Progenitors is Required for Hematopoietic Stem Cell Maintenance , 2012, Nature.

[7]  T. Yabe,et al.  Mesogenin causes embryonic mesoderm progenitors to differentiate during development of zebrafish tail somites. , 2012, Developmental biology.

[8]  C. Mitchell,et al.  Scube activity is necessary for Hedgehog signal transduction in vivo. , 2012, Developmental biology.

[9]  Arndt F. Siekmann,et al.  Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. , 2012, Developmental cell.

[10]  P. Ingham,et al.  Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[11]  D. Traver,et al.  An environmental Wnt16/Notch pathway specifies haematopoietic stem cells , 2011, Nature.

[12]  S. Sumanas,et al.  Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. , 2010, Developmental biology.

[13]  Terri T. Ni,et al.  Hedgehog signaling induces arterial endothelial cell formation by repressing venous cell fate. , 2010, Developmental biology.

[14]  M. Bhatia,et al.  Novel roles for Notch, Wnt and Hedgehog in hematopoesis derived from human pluripotent stem cells. , 2010, The International journal of developmental biology.

[15]  K. Kissa,et al.  Blood stem cells emerge from aortic endothelium by a novel type of cell transition , 2010, Nature.

[16]  D. Stainier,et al.  Hematopoietic stem cells derive directly from aortic endothelium during development , 2009, Nature.

[17]  M. Wullimann,et al.  Optimized Gal4 genetics for permanent gene expression mapping in zebrafish , 2009, Proceedings of the National Academy of Sciences.

[18]  Chaya Kalcheim,et al.  Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle , 2008, The Journal of cell biology.

[19]  Julio D Amigo,et al.  Gateway compatible vectors for analysis of gene function in the zebrafish , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[20]  Melissa Hardy,et al.  The Tol2kit: A multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[21]  A. Rodaway,et al.  SCL-GFP transgenic zebrafish: in vivo imaging of blood and endothelial development and identification of the initial site of definitive hematopoiesis. , 2007, Developmental biology.

[22]  J. Bakkers,et al.  Early Endocardial Morphogenesis Requires Scl/Tal1 , 2007, PLoS genetics.

[23]  Betsy Dobbs-McAuliffe,et al.  Dynamic somite cell rearrangements lead to distinct waves of myotome growth , 2007, Development.

[24]  Michael J. Parsons,et al.  Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase , 2007, Mechanisms of Development.

[25]  R. Kelsh,et al.  Sdf1a patterns zebrafish melanophores and links the somite and melanophore pattern defects in choker mutants , 2007, Development.

[26]  R. Bryson-Richardson,et al.  Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo. , 2007, Developmental cell.

[27]  J. Italiano,et al.  The identification and characterization of zebrafish hematopoietic stem cells. , 2006, Blood.

[28]  T. Jaffredo,et al.  Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk , 2006 .

[29]  G. Cossu,et al.  Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome , 2006, Development.

[30]  D. Stainier,et al.  Cellular and molecular analyses of vascular tube and lumen formation in zebrafish , 2005, Development.

[31]  H. Okamoto,et al.  Chemokine Signaling Guides Axons within the Retina in Zebrafish , 2005, The Journal of Neuroscience.

[32]  L. Zon,et al.  The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis , 2004, Oncogene.

[33]  B. Weinstein,et al.  In vivo imaging of embryonic vascular development using transgenic zebrafish. , 2002, Developmental biology.

[34]  Kathryn E. Crosier,et al.  Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. , 2002, Development.

[35]  M. Fishman,et al.  Patterning of angiogenesis in the zebrafish embryo. , 2002, Development.

[36]  P. Seeburg,et al.  Codon‐improved Cre recombinase (iCre) expression in the mouse , 2002, Genesis.

[37]  B. Thisse,et al.  Evolutionary origins of vertebrate appendicular muscle , 2000, Nature.

[38]  A. Eichmann,et al.  Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. , 1998, Development.

[39]  Masahiko Kuroda,et al.  Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development , 1998, Nature.

[40]  A. Amores,et al.  The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. , 1998, Developmental biology.

[41]  J. Postlethwait,et al.  SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. , 1998, Genes & development.

[42]  B. Håvik,et al.  The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain , 1998, Mechanisms of Development.

[43]  H Okamoto,et al.  High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. , 1997, Developmental biology.

[44]  D A Kane,et al.  Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. , 1996, Development.

[45]  D. Luton,et al.  Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. , 1996, Development.

[46]  L. Pardanaud,et al.  Does the paraxial mesoderm of the avian embryo have hemangioblastic capacity? , 1995, Anatomy and Embryology.

[47]  B. Brand-Saberi,et al.  Angiogenic potential of the avian somite , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[48]  D. Noden Embryonic origins and assembly of blood vessels. , 1989, The American review of respiratory disease.

[49]  P. Collas,et al.  Fish'n ChIPs: chromatin immunoprecipitation in the zebrafish embryo. , 2009, Methods in molecular biology.

[50]  Ryan M. Anderson,et al.  Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies , 2008, Nature Protocols.

[51]  B. Thisse,et al.  High-resolution in situ hybridization to whole-mount zebrafish embryos , 2007, Nature Protocols.

[52]  M. Allende,et al.  Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. , 1996, Development.

[53]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .