STRUCTURAL AND MULTI-FUNCTIONAL OPTIMIZATION USING MULTIPLE PHASES AND A LEVEL-SET METHOD

In this work we adress the problem of structural and multi-functional shape and topology optimization using several elastic materials in a fixed working domain. The description and the evolution of the interfaces between the different phases is done using the level-set method. We use a smooth Hooke’s tensor, instead of a discontinuous one. The continuous case can be seen as an approximation of the sharp interface case, and in this context, the signed distance function corresponding to each interface is used for modeling the smooth Hooke’s tensor. A directional shape derivative is calculated for the objective function to minimize. We show 2d results for compliance minimization, as well as an example of multi-functional optimization, coupling structural and thermal problems.

[1]  Grégoire Allaire,et al.  Material interface effects on the topology optimizationof multi-phase structures using a level set method , 2014 .

[2]  G. Allaire,et al.  MULTI-PHASE STRUCTURAL OPTIMIZATION VIA A LEVEL SET METHOD ∗, ∗∗ , 2014 .

[3]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[4]  Shiwei Zhou,et al.  Computational design of multi-phase microstructural materials for extremal conductivity , 2008 .

[5]  Shiwei Zhou,et al.  Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition , 2006 .

[6]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[7]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[8]  Xiaoming Wang,et al.  Color level sets: a multi-phase method for structural topology optimization with multiple materials , 2004 .

[9]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[10]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[11]  Olivier Pantz,et al.  Sensibilité de l'équation de la chaleur aux sauts de conductivité , 2005 .

[12]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[13]  Grégoire Allaire,et al.  Damage and fracture evolution in brittle materials by shape optimization methods , 2011, J. Comput. Phys..

[14]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[15]  Mei Yulin,et al.  A level set method for structural topology optimization with multi-constraints and multi-materials , 2004 .