Fabrication of Co3O4@Co–Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage

The rational design and construction of efficient electrodes for applications in energy storage have been widely conducted. In this work, we have demonstrated a binder-free electrode composed of Co3O4@Co–Ni-sulfides core/shell nanowire arrays with tunable Ni/Co ratio for the high-performance pseudo-capacitors. This as-fabricated electrode can offer the desired structural features for the efficient usage of active materials. With the advantages of the well-ordered architecture, this hierarchical electrode shows a high specific capacitance of 1844 F g−1 (7.38 F cm−2) at a current density of 5 mA cm−2. Besides, an asymmetric supercapacitor based on this synthesized electrode can deliver a maximum energy density of 44.8 Wh kg−1 and a good cycling stability of 91% retention after 4000 cycles. Our results presented here demonstrate that this hierarchical electrode has potential usage in electrochemical energy storage.

[1]  Zhimin Chen,et al.  Facilely constructing 3D porous NiCo2S4 nanonetworks for high-performance supercapacitors , 2014 .

[2]  Bin Yang,et al.  Hierarchical NiCo2O4@nickel-sulfide nanoplate arrays for high- performance supercapacitors , 2015 .

[3]  Jianjun Jiang,et al.  In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance , 2014 .

[4]  Rujia Zou,et al.  Three-dimensional networked NiCo2O4/MnO2 branched nanowire heterostructure arrays on nickel foam with enhanced supercapacitor performance , 2015 .

[5]  X. Lou,et al.  General Formation of MS (M = Ni, Cu, Mn) Box‐in‐Box Hollow Structures with Enhanced Pseudocapacitive Properties , 2014 .

[6]  Ling-Ling Wang,et al.  One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor , 2014 .

[7]  Yaming Yu,et al.  High-performance NiCo2O4@Ni3S2 core/shell mesoporous nanothorn arrays on Ni foam for supercapacitors , 2014 .

[8]  Y. Tong,et al.  Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. , 2014, ACS applied materials & interfaces.

[9]  Xuan Zhang,et al.  Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. , 2014, Nanoscale.

[10]  Zhiyuan Zeng,et al.  One-step synthesis of Ni3S2 nanorod@Ni(OH)2nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors , 2013 .

[11]  H. Alshareef,et al.  One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. , 2014, ACS nano.

[12]  Liyi Shi,et al.  Rational design of 3D hierarchical foam-like Fe2O3@CuOx monolith catalysts for selective catalytic reduction of NO with NH3 , 2015 .

[13]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[14]  Yunlong Zhao,et al.  Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. , 2013, Nano letters.

[15]  Wentao Hu,et al.  Controlled Incorporation of Ni(OH)2 Nanoplates Into Flowerlike MoS2 Nanosheets for Flexible All‐Solid‐State Supercapacitors , 2014 .

[16]  Cailing Xu,et al.  3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection , 2014 .

[17]  Dezhi Kong,et al.  Three‐Dimensional Co3O4@MnO2 Hierarchical Nanoneedle Arrays: Morphology Control and Electrochemical Energy Storage , 2014 .

[18]  Jinqing Wang,et al.  Hierarchical Co3O4@Au-decorated PPy core/shell nanowire arrays: an efficient integration of active materials for energy storage , 2015 .

[19]  Jianjun Jiang,et al.  Highly conductive NiCo₂S₄ urchin-like nanostructures for high-rate pseudocapacitors. , 2013, Nanoscale.

[20]  Jun Wang,et al.  Construction of mass-controllable mesoporous NiCo2S4 electrodes for high performance supercapacitors , 2014 .

[21]  Q. Li,et al.  Hierarchical Mo-decorated Co3O4 nanowire arrays on Ni foam substrates for advanced electrochemical capacitors , 2013 .

[22]  Wei Huang,et al.  Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. , 2014, Nanoscale.

[23]  Shuai Wang,et al.  Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. , 2014, Nano letters.

[24]  Weihua Chen,et al.  Partial Ion-Exchange of Nickel-Sulfide-Derived Electrodes for High Performance Supercapacitors , 2014 .

[25]  Shuai Wang,et al.  Nanostructured (Co, Ni)-based compounds coated on a highly conductive three dimensional hollow carbon nanorod array (HCNA) scaffold for high performance pseudocapacitors. , 2014, ACS applied materials & interfaces.

[26]  Yihe Zhang,et al.  NiCo2O4 nanostructure materials: morphology control and electrochemical energy storage. , 2014, Dalton transactions.

[27]  Deren Yang,et al.  Layer-by-layer assembly synthesis of ZnO/SnO2 composite nanowire arrays as high-performance anode for lithium-ion batteries , 2011 .

[28]  H. Alshareef,et al.  Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors , 2014 .

[29]  N. Zhang,et al.  Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes , 2014 .

[30]  Hua Zhang,et al.  Nanoporous Walls on Macroporous Foam: Rational Design of Electrodes to Push Areal Pseudocapacitance , 2012, Advanced materials.

[31]  Yueming Li,et al.  Ordered assembly of NiCo₂O₄ multiple hierarchical structures for high-performance pseudocapacitors. , 2014, ACS applied materials & interfaces.

[32]  X. Lou,et al.  Formation of Ni(x)Co(3-x)S₄ hollow nanoprisms with enhanced pseudocapacitive properties. , 2014, Angewandte Chemie.

[33]  Hongsen Li,et al.  Mesoporous NiCo2O4 Nanowire Arrays Grown on Carbon Textiles as Binder‐Free Flexible Electrodes for Energy Storage , 2014 .

[34]  Jinqing Wang,et al.  Rational construction of three dimensional hybrid Co3O4@NiMoO4 nanosheets array for energy storage application , 2014 .

[35]  S. Ramakrishna,et al.  MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High‐Performance Supercapacitors and Photovoltaics , 2014 .

[36]  Hua Zhang,et al.  Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application. , 2014, Small.

[37]  Jinqing Wang,et al.  Controllable synthesis of CoAl LDH@Ni(OH)2 nanosheet arrays as binder-free electrode for supercapacitor applications , 2014 .

[38]  Emilia Morallón,et al.  Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods , 2013 .

[39]  Jianjun Jiang,et al.  One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance , 2015 .

[40]  Li Zhang,et al.  Hierarchical Co3O4@PPy@MnO2 core–shell–shell nanowire arrays for enhanced electrochemical energy storage , 2014 .

[41]  P. Xiao,et al.  Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors , 2014 .

[42]  Wei Hu,et al.  CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. , 2014, ACS applied materials & interfaces.

[43]  Cuiping Li,et al.  Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors , 2015 .

[44]  Jingwen Zhao,et al.  Core–Shell Layered Double Hydroxide Microspheres with Tunable Interior Architecture for Supercapacitors , 2012 .

[45]  Rujia Zou,et al.  Design and synthesis of 3D interconnected mesoporous NiCo2O4@CoxNi1−x(OH)2 core–shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors , 2014 .

[46]  J. Xu,et al.  Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts , 2015 .