Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism

This paper addresses constrained and optimal engineering problems solved using an adapted particle swarm optimization (PSO) algorithm. In fact, a specific constraint-handling mechanism is presented. It consists of a closeness evaluation of the solutions to the feasible region. The total constraints violation is introduced as an objective function to minimize. Interval arithmetic is used to normalize the total violations. The resulting objective problem is solved using a simple lexicographic method. The new algorithm is called CVI-PSO for constraint violation with interval arithmetic PSO. The paper provides numerous experimental results based on a well-known benchmark and comparisons with previously reported results. Finally, a case study of the optimal design of an electrical actuator with several model reformulations is detailed.

[1]  Haiyan Lu,et al.  Self-adaptive velocity particle swarm optimization for solving constrained optimization problems , 2008, J. Glob. Optim..

[2]  Stefan Janson,et al.  Molecular docking with multi-objective Particle Swarm Optimization , 2008, Appl. Soft Comput..

[3]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[4]  Jinhua Wang,et al.  A ranking selection-based particle swarm optimizer for engineering design optimization problems , 2008 .

[5]  Jean Bigeon,et al.  Interval-based global optimization in engineering using model reformulation and constraint propagation , 2012, Eng. Appl. Artif. Intell..

[6]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[7]  M. Senthil Arumugam,et al.  A new and improved version of particle swarm optimization algorithm with global–local best parameters , 2008, Knowledge and Information Systems.

[8]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[9]  Yuren Zhou,et al.  An Adaptive Tradeoff Model for Constrained Evolutionary Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[10]  Carlos A. Coello Coello,et al.  A modified version of a T‐Cell Algorithm for constrained optimization problems , 2010 .

[11]  Russell C. Eberhart,et al.  Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization , 2002 .

[12]  G. Remy,et al.  The Electromagnetic Actuator Design Problem: An Adapted Interval Global Optimization Algorithm , 2012, IEEE Transactions on Magnetics.

[13]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[14]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..

[15]  Michael N. Vrahatis,et al.  Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems , 2005, ICNC.

[16]  Frédéric Messine,et al.  Optimal design of electromechanical actuators: a new method based on global optimization , 1998 .

[17]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[18]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..

[19]  Chukiat Worasucheep,et al.  A Particle Swarm Optimization with stagnation detection and dispersion , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[20]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[21]  P. Eberhard,et al.  Using Augmented Lagrangian Particle Swarm Optimization for Constrained Problems in Engineering , 2009 .

[22]  Haiyan Lu,et al.  Dynamic-objective particle swarm optimization for constrained optimization problems , 2006, J. Comb. Optim..

[23]  Shang He,et al.  An improved particle swarm optimizer for mechanical design optimization problems , 2004 .

[24]  Carlos A. Coello Coello,et al.  A simple multimembered evolution strategy to solve constrained optimization problems , 2005, IEEE Transactions on Evolutionary Computation.

[25]  Luís N. Vicente,et al.  A particle swarm pattern search method for bound constrained global optimization , 2007, J. Glob. Optim..

[26]  Mezura-MontesEfrén,et al.  Differential evolution in constrained numerical optimization , 2010 .

[27]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[28]  Carlos A. Coello Coello,et al.  Handling constraints using multiobjective optimization concepts , 2004 .

[29]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[30]  Efrén Mezura-Montes,et al.  Differential evolution in constrained numerical optimization: An empirical study , 2010, Inf. Sci..

[31]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[32]  Giovanni Fasano,et al.  Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization , 2010, J. Glob. Optim..

[33]  P. Eberhard,et al.  Using augmented Lagrangian particle swarm optimization for constrained problems in engineering">Using augmented Lagrangian particle swarm optimization for constrained problems in engineering , 2006 .

[34]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[35]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[36]  Yuren Zhou,et al.  Accelerating adaptive trade‐off model using shrinking space technique for constrained evolutionary optimization , 2009 .

[37]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .