Advanced characterization and optical simulation for the design of solar selective coatings based on carbon: transition metal carbide nanocomposites

[1]  J. Garnett,et al.  Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions. II , 1905 .

[2]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[3]  H. Nowotny,et al.  Das Dreistoffsystem: Molybd?n?Silizium?Kohlenstoff , 1954 .

[4]  R. Smoluchowski,et al.  Elements of X‐Ray Diffraction , 1957 .

[5]  G. Harding Sputtered metal carbide solar‐selective absorbing surfaces , 1976 .

[6]  Michael G. Hutchins,et al.  Spectrally selective solar absorber coatings , 1979 .

[7]  G. Harding,et al.  Magnetron‐sputtered metal carbide solar selective absorbing surfaces , 1979 .

[8]  G. Harding Absorptance and emittance of metal carbide selective surfaces sputter deposited onto glass tubes , 1980 .

[9]  G. Niklasson,et al.  Optical properties and solar selectivity of coevaporated Co‐Al2O3 composite films , 1984 .

[10]  Allison,et al.  Optical and electrical properties of single-crystalline zirconium carbide. , 1985, Physical review. B, Condensed matter.

[11]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[12]  W. Theiß,et al.  Effective dielectric functions of alkali halide composites and their spectral representation , 1991 .

[13]  T. Shidara,et al.  Optical Constants of TiC0.95, VC0.86 and NbC0.93 from 0.8 to 80 eV , 1993 .

[14]  Wolfgang Graf,et al.  Characterization of a-C:H/W and a-C:H/Cr solar selective absorber coatings , 1994, Other Conferences.

[15]  W. Theiß The use of effective medium theories in optical spectroscopy , 1994 .

[16]  S. Henkel,et al.  Connecting microscopic and macroscopic properties of porous media : choosing appropriate effective medium concepts , 1995 .

[17]  Michael Nastasi,et al.  Handbook of modern ion beam materials analysis , 1995 .

[18]  P. Oelhafen,et al.  Preparation and Characterization of Chromium Containing amorphous Hydrogenated Carbon Films (A-C:H/Cr) , 1995 .

[19]  Cathodic arc deposition of solar thermal selective surfaces , 1996 .

[20]  Hugh O. Pierson,et al.  Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications , 1996 .

[21]  C. S. Bhatia,et al.  Multilayers of amorphous carbon prepared by cathodic arc deposition , 1997 .

[22]  P. Oelhafen,et al.  Accelerated aging tests of chromium containing amorphous hydrogenated carbon coatings for solar collectors , 1998 .

[23]  J. Robertson,et al.  Determination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman scattering and X-ray reflectivity , 2000 .

[24]  Qi-Chu Zhang,et al.  Recent progress in high-temperature solar selective coatings , 2000 .

[25]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[26]  Qi-Chu Zhang Optimizing analysis of W-AlN cermet solar absorbing coatings , 2001 .

[27]  Andreas Schüler,et al.  Titanium containing amorphous hydrogenated silicon carbon films (a-Si:C:H/Ti) for durable solar absorber coatings , 2001 .

[28]  A. Anders Energetic deposition using filtered cathodic arc plasmas , 2002 .

[29]  Andreas Schüler,et al.  Nanostructured materials for solar energy conversion , 2005 .

[30]  S. Logothetidis Optical and electronic properties of amorphous carbon materials , 2003 .

[31]  D. Mckenzie,et al.  Control of stress and microstructure in cathodic arc deposited films , 2003 .

[32]  Hans Hofsäss,et al.  Self-organized nanoscale multilayer growth in hyperthermal ion deposition , 2004 .

[33]  Jyh-Ming Ting,et al.  Self-assembled alternating nano-scaled layers of carbon and metal , 2004 .

[34]  G. Radnóczi,et al.  Structure and mechanical properties of carbon-nickel and CNx-nickel nanocomposite films , 2004 .

[35]  G. Radnóczi,et al.  Structural, electrical and magnetic properties of carbon–nickel composite thin films , 2005 .

[36]  Roger J. Narayan,et al.  Pulsed laser deposition of functionally gradient diamondlike carbon–metal nanocomposites , 2005 .

[37]  Xiaomin Li,et al.  Thermal stability and oxidation properties of magnetron sputtered diamond-like carbon and its nanocomposite coatings , 2006 .

[38]  G. Radnóczi,et al.  C–Ti nanocomposite thin films: Structure, mechanical and electrical properties , 2007 .

[39]  G. Radnóczi,et al.  Growth regimes and metal enhanced 6-fold ring clustering of carbon in carbon-nickel composite thin films , 2007 .

[40]  Andreas C Scheinost,et al.  X-ray Spectroscopic and Magnetic Investigation of C:Ni Nanocomposite Films Grown by Ion Beam Cosputtering , 2008 .

[41]  Matthias Krause,et al.  Soft X-ray Absorption and Emission Spectroscopic Investigation of Carbon and Carbon:Transition Metal Composite Films , 2008 .

[42]  Andrew Forbes,et al.  Carbon-in-silica composite selective solar absorbers: a determination of composition and dielectric properties , 2009, Optics + Photonics for Sustainable Energy.

[43]  G. Soares,et al.  Carbon occupancy of interstitial sites in vanadium carbide films deposited by direct current reactive magnetron sputtering , 2009 .

[44]  Matthias Krause,et al.  Morphology and Structure of C:Co, C:V, and C:Cu Nanocomposite Films , 2009 .

[45]  A. Schüler,et al.  Modeling the absorption behavior of solar thermal collector coatings utilizing graded alpha-C:H/TiC layers. , 2009, Applied optics.

[46]  M. Bilek,et al.  Sculpting nanoscale precipitation patterns in nanocomposite thin films via hyperthermal ion deposition , 2010 .

[47]  R. Heller,et al.  Bulk diffusion induced structural modifications of carbon-transition metal nanocomposite films , 2011 .

[48]  Li Guo,et al.  Computer Simulation on Mo/Al2O3 Solar Energy Selective Absorbing Coating , 2011 .

[49]  D. Y. Goswami,et al.  A review on surface control of thermal radiation by paints and coatings for new energy applications , 2012 .

[50]  A. Forbes,et al.  Preparation and characterization of carbon/nickel oxide nanocomposite coatings for solar absorber applications , 2012 .

[51]  H. Barshilia,et al.  Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications , 2012 .

[52]  U. Jansson,et al.  Sputter deposition of transition-metal carbide films - A critical review from a chemical perspective , 2013 .

[53]  J. G. Buijnsters,et al.  Effect of the metal concentration on the structural, mechanical and tribological properties of self-organized a-C:Cu hard nanocomposite coatings , 2013 .

[54]  S. Gemming,et al.  Structure, Optical and Mechanical Properties of Direct Current Magnetron Sputtered Carbon: Vanadium Nanocomposite Thin Films , 2013 .

[55]  R. Heller,et al.  Compositionally modulated ripples during composite film growth: Three-dimensional pattern formation at the nanoscale , 2014 .

[56]  R. Escobar-Galindo,et al.  Novel Mo-Si3N4 based selective coating for high temperature concentrating solar power applications , 2014 .

[57]  C. Zou,et al.  Effects of antireflection layers on the optical and thermal stability properties of a spectrally selective CrAlN–CrAlON based tandem absorber , 2015 .