THEORETICAL STUDY TO IMPROVE THE ENERGY BALANCE IN WASTEWATER TREATMENT PLANT : Investigation of microalgae photobioreactor in biological treatment step and open algal pond in reject water treatment in Uppsala and Västerås
暂无分享,去创建一个
The self-treatment system of nature cannot handle man-caused high rate water pollution on its own, therefore cleaning in wastewater treatment plant (WWTP) is necessary to avoid eutrophication – excessive enrichment of nature by nutrients. Current technologies applied in WWTPs are old, outdating and highly energy demanding, especially biological treatment step generally requires large amount of energy for aeration of water. The alternative to current system could be microalgae treatment step, which would use green algae to consume pollutants present in the waste water, namely nitrogen, phosphorus and heavy metals. Via photosynthesis it could produce oxygen required for biological oxidation of organic matter. Furthermore carbon source is necessary for microalgal growth, this can be added to the water as CO2 produced in other industries and so decrease global greenhouse gas footprint. Co-digestion of microalgae with undigested wastewater sludge under mesophilic conditions can give a synergic effect for biogas production, therefore harvested and co-digested microalgae could contribute to positive energy balance of WWTP. Full-scale microalgae cultivation in WWTP can be achieved only when good grow is guaranteed. This is a result of many factors, particularly access to nutrients, light condition, water temperature, and pH. The goal of master’s thesis was to understand and evaluate main factors influencing algal growth using literature review, propose design of microalgae treatment step with artificial lights and evaluate energy balance, of wastewater treatment plants in Uppsala and Vasteras with new design. The work proposed two different designs of microalgae treatment steps, modelled in Excel and applied to current state of municipal WWTP in Vasteras and Uppsala with belonging satellite plants. The first design of microalgae activated photobioreactor (MAASPBR) aimed to replace current biological treatment step. This is possible in Vasteras and Uppsala WWTPs if microalgae can consume 75% of total nitrogen (Ntot) and produce at least 13.5 and 2.4 tonne O2/day in Vasteras and Uppsala respectively. The sensitivity analysis showed that minimal volumetric algal yield of 0.15 kg/m3 ,day and 0.25 kg/m3 ,day is required for Vasteras and Uppsala respectively, when oxygen production rate of 1.92 kg O2/kg microalgae is assumed. Furthermore harvested and co-digested algae with sewage sludge contributes to significant increase of biogas production and negligible transportation energy increase. The second design of open algal pond for reject water (OAPRW) aims to cultivate microalgae on reject water with high concentration of nutrients, generated in sludge centrifuge. The model assumed high algal growth due to excessive amount of nutrients and increased water temperature to 24°C. Results show a possible 23% and 20% electricity saving on blowers in the biological treatment in Vasteras and Uppsala respectively. Both models have positive impact on energy balance in all WWTPs, however MAASPBR has greater uncertainties, because this type of photobioreactor has not been tested unlike OAPRW which has been tested in pilot plant scale.