Eigenvalues for the Laplace Operator in the Interior of an Equilateral Triangle
暂无分享,去创建一个
[1] Bernard Deconinck,et al. The Method of Fokas for Solving Linear Partial Differential Equations , 2014, SIAM Rev..
[2] A. Fokas,et al. Water waves over a variable bottom: a non-local formulation and conformal mappings , 2012, Journal of Fluid Mechanics.
[3] Bengt Fornberg,et al. A numerical implementation of Fokas boundary integral approach: Laplace's equation on a polygonal domain , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[4] J. Kaplunov,et al. Riemann–Hilbert Approach to the Elastodynamic Equation: Part I , 2011 .
[5] David A. Smith. Well-posed two-point initial-boundary value problems with arbitrary boundary conditions , 2011, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] Athanassios S. Fokas,et al. A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon , 2010 .
[7] A. Fokas,et al. A new transform method I: domain-dependent fundamental solutions and integral representations , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] Athanassios S. Fokas,et al. A new transform method II: the global relation and boundary-value problems in polar coordinates , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[9] A. S. Fokas,et al. The Heat Equation in the Interior of an Equilateral Triangle , 2010 .
[10] G. Dujardin. Asymptotics of linear initial boundary value problems with periodic boundary data on the half-line and finite intervals , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[11] A. Fokas,et al. Highly Oscillatory Problems: Novel analytical and numerical methods for elliptic boundary value problems , 2009 .
[12] Athanassios S. Fokas,et al. A semi-analytical numerical method for solving evolution and elliptic partial differential equations , 2009 .
[13] A. S. Fokas,et al. A non-local formulation of rotational water waves , 2008, Journal of Fluid Mechanics.
[14] A. G. Sifalakis,et al. The generalized Dirichlet-Neumann map for linear elliptic PDEs and its numerical implementation , 2008 .
[15] Athanassios S. Fokas,et al. On a new non-local formulation of water waves , 2006, Journal of Fluid Mechanics.
[16] B. Pelloni. The spectral representation of two-point boundary-value problems for third-order linear evolution partial differential equations , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[17] A. Fokas,et al. The modified Helmholtz equation in a semi-strip , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] G. Dassios,et al. The basic elliptic equations in an equilateral triangle , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[19] A. Fokas,et al. A transform method for linear evolution PDEs on a finite interval , 2004, math/0412027.
[20] Christos Xenophontos,et al. An analytical method for linear elliptic PDEs and its numerical implementation , 2004 .
[21] Athanassios S. Fokas,et al. Explicit integral solutions for the plane elastostatic semi-strip , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[22] B. Pelloni. Well-posed boundary value problems for linear evolution equations on a finite interval , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.
[23] Athanassios S. Fokas,et al. On a transform method for the Laplace equation in a polygon , 2003 .
[24] Athanassios S. Fokas,et al. A new transform method for evolution partial differential equations , 2002 .
[25] A. Fokas,et al. Solution of the modified Helmholtz equation in a triangular domain and an application to diffusion-limited coalescence. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] Athanassios S. Fokas,et al. Two–dimensional linear partial differential equations in a convex polygon , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[27] A. Fokas,et al. A Riemann–Hilbert Approach to the Laplace Equation , 2000 .
[28] A. Fokas. On the integrability of linear and nonlinear partial differential equations , 2000 .
[29] M. Práger. Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle , 1998 .
[30] A. S. Fokas,et al. A unified transform method for solving linear and certain nonlinear PDEs , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[31] Mark A. Pinsky,et al. Completeness of the Eigenfunctions of the Equilateral Triangle , 1985 .
[32] Mark A. Pinsky,et al. The Eigenvalues of an Equilateral Triangle , 1980 .
[33] R. Terras,et al. Image methods for constructing Green’s functions and eigenfunctions for domains with plane boundaries , 1980 .
[34] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[35] D. Crowdy. An assembly of steadily translating bubbles in a Hele–Shaw channel , 2008 .
[36] Athanassios S. Fokas,et al. A Unified Approach To Boundary Value Problems , 2008 .
[37] G. Dassios. What non-linear methods offered to linear problems? The Fokas transform method , 2007 .
[38] Brian J. McCartin,et al. Eigenstructure of the equilateral triangle. Part III. The Robin problem , 2004, Int. J. Math. Math. Sci..
[39] Brian J. McCartin,et al. Eigenstructure of the Equilateral Triangle, Part I: The Dirichlet Problem , 2003, SIAM Rev..
[40] Brian J. McCartin,et al. Eigenstructure of the equilateral triangle, Part II: The Neumann problem , 2002 .