Eigenvalues for the Laplace Operator in the Interior of an Equilateral Triangle

[1]  Bernard Deconinck,et al.  The Method of Fokas for Solving Linear Partial Differential Equations , 2014, SIAM Rev..

[2]  A. Fokas,et al.  Water waves over a variable bottom: a non-local formulation and conformal mappings , 2012, Journal of Fluid Mechanics.

[3]  Bengt Fornberg,et al.  A numerical implementation of Fokas boundary integral approach: Laplace's equation on a polygonal domain , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  J. Kaplunov,et al.  Riemann–Hilbert Approach to the Elastodynamic Equation: Part I , 2011 .

[5]  David A. Smith Well-posed two-point initial-boundary value problems with arbitrary boundary conditions , 2011, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Athanassios S. Fokas,et al.  A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon , 2010 .

[7]  A. Fokas,et al.  A new transform method I: domain-dependent fundamental solutions and integral representations , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Athanassios S. Fokas,et al.  A new transform method II: the global relation and boundary-value problems in polar coordinates , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  A. S. Fokas,et al.  The Heat Equation in the Interior of an Equilateral Triangle , 2010 .

[10]  G. Dujardin Asymptotics of linear initial boundary value problems with periodic boundary data on the half-line and finite intervals , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  A. Fokas,et al.  Highly Oscillatory Problems: Novel analytical and numerical methods for elliptic boundary value problems , 2009 .

[12]  Athanassios S. Fokas,et al.  A semi-analytical numerical method for solving evolution and elliptic partial differential equations , 2009 .

[13]  A. S. Fokas,et al.  A non-local formulation of rotational water waves , 2008, Journal of Fluid Mechanics.

[14]  A. G. Sifalakis,et al.  The generalized Dirichlet-Neumann map for linear elliptic PDEs and its numerical implementation , 2008 .

[15]  Athanassios S. Fokas,et al.  On a new non-local formulation of water waves , 2006, Journal of Fluid Mechanics.

[16]  B. Pelloni The spectral representation of two-point boundary-value problems for third-order linear evolution partial differential equations , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  A. Fokas,et al.  The modified Helmholtz equation in a semi-strip , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  G. Dassios,et al.  The basic elliptic equations in an equilateral triangle , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  A. Fokas,et al.  A transform method for linear evolution PDEs on a finite interval , 2004, math/0412027.

[20]  Christos Xenophontos,et al.  An analytical method for linear elliptic PDEs and its numerical implementation , 2004 .

[21]  Athanassios S. Fokas,et al.  Explicit integral solutions for the plane elastostatic semi-strip , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  B. Pelloni Well-posed boundary value problems for linear evolution equations on a finite interval , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Athanassios S. Fokas,et al.  On a transform method for the Laplace equation in a polygon , 2003 .

[24]  Athanassios S. Fokas,et al.  A new transform method for evolution partial differential equations , 2002 .

[25]  A. Fokas,et al.  Solution of the modified Helmholtz equation in a triangular domain and an application to diffusion-limited coalescence. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Athanassios S. Fokas,et al.  Two–dimensional linear partial differential equations in a convex polygon , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  A. Fokas,et al.  A Riemann–Hilbert Approach to the Laplace Equation , 2000 .

[28]  A. Fokas On the integrability of linear and nonlinear partial differential equations , 2000 .

[29]  M. Práger Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle , 1998 .

[30]  A. S. Fokas,et al.  A unified transform method for solving linear and certain nonlinear PDEs , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Mark A. Pinsky,et al.  Completeness of the Eigenfunctions of the Equilateral Triangle , 1985 .

[32]  Mark A. Pinsky,et al.  The Eigenvalues of an Equilateral Triangle , 1980 .

[33]  R. Terras,et al.  Image methods for constructing Green’s functions and eigenfunctions for domains with plane boundaries , 1980 .

[34]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[35]  D. Crowdy An assembly of steadily translating bubbles in a Hele–Shaw channel , 2008 .

[36]  Athanassios S. Fokas,et al.  A Unified Approach To Boundary Value Problems , 2008 .

[37]  G. Dassios What non-linear methods offered to linear problems? The Fokas transform method , 2007 .

[38]  Brian J. McCartin,et al.  Eigenstructure of the equilateral triangle. Part III. The Robin problem , 2004, Int. J. Math. Math. Sci..

[39]  Brian J. McCartin,et al.  Eigenstructure of the Equilateral Triangle, Part I: The Dirichlet Problem , 2003, SIAM Rev..

[40]  Brian J. McCartin,et al.  Eigenstructure of the equilateral triangle, Part II: The Neumann problem , 2002 .