DIFFUSE Lyα EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES

Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with langzrang = 2.65, all of which have been imaged in the Lyα line with extremely deep narrow-band imaging, we examine galaxy Lyα emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Lyα emission properties. Approximately 45% (55%) of the galaxy spectra have Lyα appearing in net absorption (emission), with ≃20% satisfying commonly used criteria for the identification of "Lyα emitters" (LAEs; W 0(Lyα) ≥ 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Lyα images to show that all sub-samples exhibit diffuse Lyα emission to radii of at least 10" (~80 physical kpc). The characteristic exponential scale lengths for Lyα line emission exceed that of the λ_0 = 1220 A UV continuum light by factors of ~5-10. The surface brightness profiles of Lyα emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Lyα appears in net absorption in the spectra, exhibit qualitatively similar diffuse Lyα emission halos. Accounting for the extended Lyα emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Lyα imaging, increases the total Lyα flux (and rest equivalent width W _0(Lyα)) by an average factor of ~5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed Lyα emission in the diffuse halos originates in the galaxy H II regions but is scattered in our direction by H I gas in the galaxy's circum-galactic medium. The overall intensity of Lyα halos, but not the surface brightness distribution, is strongly correlated with the emission observed in the central ~1" —more luminous halos are observed for galaxies with stronger central Lyα emission. We show that whether or not a galaxy is classified as a giant "Lyα blob" (LAB) depends sensitively on the Lyα surface brightness threshold reached by an observation. Accounting for diffuse Lyα halos, all LBGs would be LABs if surveys were sensitive to 10 times lower Lyα surface brightness thresholds; similarly, essentially all LBGs would qualify as LAEs.

[1]  C. Leitherer,et al.  THE LYMAN ALPHA MORPHOLOGY OF LOCAL STARBURST GALAXIES: RELEASE OF CALIBRATED IMAGES , 2008, 0803.1174.

[2]  L. Infante,et al.  Lyα Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field-South , 2007, 0705.3917.

[3]  M. Brocklehurst,et al.  Calculations of Level Populations for the Low Levels of Hydrogenic Ions in Gaseous Nebulae , 1971 .

[4]  Stephen J. Warren,et al.  HST images of a galaxy group at z = 2.81, and the sizes of damped Lyα galaxies , 1998 .

[5]  Celine Peroux,et al.  A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.

[6]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[7]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[8]  J. Graham,et al.  Seeking the Ultraviolet Ionizing Background at z ≈ 3 with the Keck Telescope , 1998, astro-ph/9808111.

[9]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[10]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[11]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[12]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[13]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[14]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[15]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[16]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[17]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[18]  C. Leitherer,et al.  Escape of about five per cent of Lyman-α photons from high-redshift star-forming galaxies , 2010, Nature.

[19]  S. M. Fall,et al.  Lyman-Alpha Emission from Galaxies , 1993 .

[20]  Eso - Garching,et al.  Evolution in the properties of Lyman-α emitters from redshifts z ~ 3 to z ~ 2 , 2008, 0812.3152.

[21]  J. Bechtold,et al.  A Uniform Analysis of the Lyα Forest at z = 0-5. II. Measuring the Mean Intensity of the Extragalactic Ionizing Background Using the Proximity Effect , 2000, astro-ph/0004155.

[22]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[23]  J. Huchra,et al.  How to find galaxies at high redshift , 1984 .

[24]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[25]  R. Terlevich,et al.  Extragalactic H II regions in the UV - Implications for primeval galaxies , 1981 .

[26]  C. C. Steidel,et al.  Possible Detection of Lyα Fluorescence from a Damped Lyα System at Redshift z ~ 2.8 , 2005 .

[27]  L. Barnes,et al.  A joint model for the emission and absorption properties of damped Lyα absorption systems , 2008, 0809.5056.

[28]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[29]  D. Meier The Optical Appearance of Model Primeval Galaxies , 1976 .

[30]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[31]  The Building the Bridge survey for z =3 Lyα emitting galaxies I. Method and first results , 2003, astro-ph/0305282.

[32]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[33]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[34]  A. Loeb,et al.  Lyα blobs as an observational signature of cold accretion streams into galaxies , 2009, 0902.2999.

[35]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[36]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[37]  Simon J. Lilly,et al.  Fluorescent Lyα Emission from the High-Redshift Intergalactic Medium , 2005 .

[38]  L. Barnes,et al.  Faint extended Lyα emission due to star formation at the centre of high column density QSO absorption systems , 2009, 0912.1345.

[39]  M. Zaldarriaga,et al.  A Flat Photoionization Rate at 2 ≤ z ≤ 4.2: Evidence for a Stellar-Dominated UV Background and against a Decline of Cosmic Star Formation beyond z ~ 3 , 2008, 0806.0372.

[40]  Z. Haiman,et al.  Lyα Radiation from Collapsing Protogalaxies. II. Observational Evidence for Gas Infall , 2005, astro-ph/0510409.

[41]  C. Steidel,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 12/14/05 Hα OBSERVATIONS OF A LARGE SAMPLE OF GALAXIES AT z ∼ 2: IMPLICATIONS FOR STAR FORMATION IN HIGH REDSHIFT GALAXIES 1 , 2006 .

[42]  Max Pettini,et al.  The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3 , 2006, astro-ph/0606635.

[43]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[44]  The mysterious absence of neutral hydrogen within 1 Mpc of a luminous quasar at redshift 2.168 , 2004, astro-ph/0405506.

[45]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[46]  Max Pettini,et al.  The Physical Nature of Rest-UV Galaxy Morphology During the Peak Epoch of Galaxy Formation , 2007 .

[47]  C. Steidel,et al.  DUST OBSCURATION AND METALLICITY AT HIGH REDSHIFT: NEW INFERENCES FROM UV, Hα, AND 8 μm OBSERVATIONS OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1002.0837.

[48]  Zheng Zheng,et al.  A z = 3 Lyα BLOB ASSOCIATED WITH A DAMPED Lyα SYSTEM PROXIMATE TO ITS BACKGROUND QUASAR , 2008, 0807.2271.

[49]  R. Davé,et al.  Galaxies in a simulated ΛCDM universe – II. Observable properties and constraints on feedback , 2009, 0901.1880.

[50]  The Lyman alpha forest opacity and the metagalactic hydrogen ionization rate at z~ 2-4 , 2004, astro-ph/0411072.

[51]  E. Terlevich,et al.  Lyα Emission in Starbursts: Implications for Galaxies at High Redshift , 2003, astro-ph/0309396.

[52]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[53]  A. Andersen,et al.  Lyα RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES , 2009, 0907.2698.

[54]  D. Neufeld The Escape of Lyman-Alpha Radiation from a Multiphase Interstellar Medium , 1991 .

[55]  D. Neufeld The transfer of resonance-line radiation in static astrophysical media , 1990 .

[56]  Iap,et al.  The escape of Lyman photons from a young starburst: the case of Haro 11 , 2007, 0710.2622.

[58]  J. Sommer-Larsen,et al.  Lyα RADIATIVE TRANSFER IN COSMOLOGICAL SIMULATIONS USING ADAPTIVE MESH REFINEMENT , 2008 .

[59]  R. B. Partridge,et al.  Are Young Galaxies Visible , 1967 .

[60]  L. Spitzer Physical processes in the interstellar medium , 1998 .

[61]  D. Schaerer,et al.  3D Lyα radiation transfer III. Constraints on gas and stellar properties of z ∼ 3 Lyman break galaxies (LBG) and implications for high-z LBGs and Lyα emitters , 2008, 0805.3601.

[62]  D. Weinberg,et al.  Lyα EMISSION FROM COSMIC STRUCTURE. I. FLUORESCENCE , 2009, 0907.0704.

[63]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[64]  S. Okamura,et al.  A Subaru Search for Lyα Blobs in and around the Protocluster Region At Redshift z = 3.1 , 2004, astro-ph/0405221.

[65]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[66]  Institute for Advanced Study,et al.  RADIATIVE TRANSFER MODELING OF Lyα EMITTERS. I. STATISTICS OF SPECTRA AND LUMINOSITY , 2009, 0910.2712.

[67]  J. Tinker,et al.  The Varied Fates of z ~ 2 Star-forming Galaxies , 2007, 0711.0001.

[68]  C. Steidel,et al.  Morphologies of Galaxies in and around a Protocluster at z = 2.300 , 2007, 0706.2865.

[69]  C. Steidel,et al.  Spectroscopic Identification of a Protocluster at z = 2.300: Environmental Dependence of Galaxy Properties at High Redshift , 2005, astro-ph/0502432.

[70]  C. Steidel,et al.  THE RELATIONSHIP BETWEEN STELLAR POPULATIONS AND Lyα EMISSION IN LYMAN BREAK GALAXIES , 2009, 0911.2000.

[71]  S. Okamura,et al.  Large-Scale Structure of Emission-Line Galaxies at z = 3.1 , 2004 .

[72]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[73]  S. Finkelstein,et al.  Effects of Dust Geometry in Lyα Galaxies at z = 4.4 , 2007, 0708.4226.

[74]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[75]  M. Pettini,et al.  The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.