Analysis of New Four-Dimensional Chaotic Circuits with Experimental and numerical Methods

Dynamically qualitative properties of individual orbits in a new four-dimensional nonlinear circuit are observed on an oscilloscope. Meanwhile, they are also traced numerically with the help of some methods for finding chaos. Comparisons show that the observed results are consistent with the computed ones to a great extent. In addition, the bifurcation, Lyapunvon spectra, fast Lyapunov indicators and small alignment indexes represent almost the same rules of transitivity to chaos on a control parameter. It is found when the parameter has a threshold value from order to chaos, and the chaos gets stronger and stronger, the parameter is smoothly varied from small to large. In particular, the entire set of Lyapunov exponents can lead to another threshold value of the parameter from chaotic to hyperchaotic behaviors.

[1]  Ch. Skokos,et al.  Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .

[2]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[3]  Guanrong Chen,et al.  Analysis and circuit implementation of a new 4D chaotic system , 2006 .

[4]  Georg A. Gottwald,et al.  A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Fernando Roig,et al.  A COMPARISON BETWEEN METHODS TO COMPUTE LYAPUNOV EXPONENTS , 2001 .

[6]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[7]  Xin Wu,et al.  Lyapunov indices with two nearby trajectories in a curved spacetime , 2006, 1006.5251.

[8]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[9]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[10]  Xin Wu,et al.  Computation of Lyapunov exponents in general relativity , 2003 .

[11]  G. Sussman,et al.  Numerical Evidence That the Motion of Pluto Is Chaotic , 1988, Science.

[12]  Xin Wu,et al.  Effects of the cosmological constant on chaos in an FRW scalar field universe , 2009 .

[13]  Xin Wu,et al.  Chaotic Dynamics in a Superposed Weyl Spacetime , 2006 .

[14]  Xin Wu,et al.  Revisit on ``Ruling out chaos in compact binary systems'' , 2007, 1004.5057.

[15]  Xin Wu,et al.  Resurvey of order and chaos in spinning compact binaries , 2008, 1004.5317.

[16]  Alberto Saa On the viability of local criteria for chaos , 2004 .

[17]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[18]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[19]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[20]  Guanrong Chen,et al.  Bifurcation Control: Theories, Methods, and Applications , 2000, Int. J. Bifurc. Chaos.

[21]  George Contopoulos,et al.  Order and chaos , 1994 .

[22]  Xin Wu,et al.  A new interpretation of zero Lyapunov exponents in BKL time for Mixmaster cosmology , 2010 .

[23]  Marcelo Schiffer,et al.  Geometry of Hamiltonian chaos. , 2007, Physical review letters.

[24]  Elena Lega,et al.  On the Structure of Symplectic Mappings. The Fast Lyapunov Indicator: a Very Sensitive Tool , 2000 .

[25]  Levin Gravity waves, chaos, and spinning compact binaries , 2000, Physical review letters.

[26]  Xin Wu,et al.  Is the Hamiltonian geometrical criterion for chaos always reliable , 2009 .

[27]  E. Lega,et al.  FAST LYAPUNOV INDICATORS. APPLICATION TO ASTEROIDAL MOTION , 1997 .

[28]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[29]  Guanrong Chen,et al.  A new hyperchaotic system and its circuit implementation , 2009 .

[30]  O. Rössler An equation for hyperchaos , 1979 .

[31]  James Binney,et al.  Spectral stellar dynamics , 1982 .

[32]  Marco Pettini,et al.  Geometric approach to Hamiltonian dynamics and statistical mechanics , 2000 .

[33]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[34]  Ch. Skokos,et al.  Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method , 2007 .

[35]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[36]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .