New algebraic constructions of rotated Z/sup n/-lattice constellations for the Rayleigh fading channel

In this correspondence, we present various families of full diversity rotated Z/sup n/-lattice constellations based on algebraic number theory constructions. We are able to give closed-form expressions of their minimum product distance using the corresponding algebraic properties.

[1]  E. Bayer-Fluckiger Lattices and number Fields , 1999 .

[2]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[3]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[4]  Emanuele Viterbo,et al.  Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel , 1998, IEEE Trans. Inf. Theory.

[5]  P. Samuel Théorie algébrique des nombres , 1971 .

[6]  Jean-Claude Belfiore,et al.  Algebraic tools to build modulation schemes for fading channels , 1997, IEEE Trans. Inf. Theory.

[7]  Emanuele Viterbo,et al.  Good lattice constellations for both Rayleigh fading and Gaussian channels , 1996, IEEE Trans. Inf. Theory.

[8]  J. Neukirch Algebraic Number Theory , 1999 .

[9]  B Erez,et al.  The Galois structure of the trace form in extensions of odd prime degree , 1988 .

[10]  H. P. F. Swinnerton-Dyer A brief guide to algebraic number theory , 2001 .

[11]  Masayuki Noro,et al.  Risa/Asir—a computer algebra system , 1992, ISSAC '92.

[12]  X. Giraud,et al.  Optimal linear labelling for the minimization of both source and channel distortion , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[13]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[14]  Harald Niederreiter,et al.  A Propagation Rule for Linear Codes , 2000, Applicable Algebra in Engineering, Communication and Computing.

[15]  Wei Sun,et al.  On commutativity of duality operator and propagation operator of linear codes generated from algebraic curves , 2003, IEEE Trans. Inf. Theory.

[16]  Karim Abed-Meraim,et al.  Diagonal algebraic space-time block codes , 2002, IEEE Trans. Inf. Theory.

[17]  S. Lang Algebraic Number Theory , 1971 .