Wild Bootstrap Tests for IV Regression

We propose a wild bootstrap procedure for linear regression models estimated by instrumental variables. Like other bootstrap procedures that we proposed elsewhere, it uses efficient estimates of the reduced-form equation(s). Unlike the earlier procedures, it takes account of possible heteroscedasticity of unknown form. We apply this procedure to t tests, including heteroscedasticity-robust t tests, and to the Anderson–Rubin test. We provide simulation evidence that it works far better than older methods, such as the pairs bootstrap. We also show how to obtain reliable confidence intervals by inverting bootstrap tests. An empirical example illustrates the utility of these procedures.

[1]  Alfonso Flores-Lagunes,et al.  Finite sample evidence of IV estimators under weak instruments , 2007 .

[2]  Will Tribbey,et al.  Numerical Recipes: The Art of Scientific Computing (3rd Edition) is written by William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, and published by Cambridge University Press, © 2007, hardback, ISBN 978-0-521-88068-8, 1235 pp. , 1987, SOEN.

[3]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[4]  Marcelo J. Moreira,et al.  Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak , 2004 .

[5]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[6]  J. Fox Bootstrapping Regression Models , 2002 .

[7]  D. Freedman On Bootstrapping Two-Stage Least-Squares Estimates in Stationary Linear Models , 1984 .

[8]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[9]  J. MacKinnon,et al.  Bootstrap tests: how many bootstraps? , 2000 .

[10]  James G. M ac Kinnon Bootstrap Methods in Econometrics , 2006 .

[11]  J. MacKinnon,et al.  Bootstrap Inference in a Linear Equation Estimated by Instrumental Variables , 2008 .

[12]  James G. MacKinnon,et al.  THE SIZE DISTORTION OF BOOTSTRAP TESTS , 1999, Econometric Theory.

[13]  David Card,et al.  Using Geographic Variation in College Proximity to Estimate the Return to Schooling , 1993 .

[14]  R. Beran Prepivoting Test Statistics: A Bootstrap View of Asymptotic Refinements , 1988 .

[15]  T. W. Anderson,et al.  Estimation of the Parameters of a Single Equation in a Complete System of Stochastic Equations , 1949 .

[16]  Jean-Marie Dufour,et al.  Further results on projection-based inference in IV regressions with weak, collinear or missing instruments ∗ , 2007 .

[17]  Emmanuel Flachaire,et al.  The wild bootstrap, tamed at last , 2001 .

[18]  Frank Kleibergen,et al.  Pivotal statistics for testing structural parameters in instrumental variables regression , 2002 .

[19]  C. F. Wu JACKKNIFE , BOOTSTRAP AND OTHER RESAMPLING METHODS IN REGRESSION ANALYSIS ' BY , 2008 .

[20]  Donald W. K. Andrews,et al.  Optimal Two‐Sided Invariant Similar Tests for Instrumental Variables Regression , 2006 .

[21]  Lutz Kilian,et al.  Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form , 2002, SSRN Electronic Journal.

[22]  William H. Press,et al.  Numerical recipes in C , 2002 .

[23]  Marcelo J. Moreira A Conditional Likelihood Ratio Test for Structural Models , 2003 .

[24]  Jean-Marie Dufour,et al.  Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments , 2005 .

[25]  J. MacKinnon,et al.  Econometric Theory and Methods , 2003 .

[26]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .