Melanocytic nevi and melanoma: unraveling a complex relationship

Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma.

[1]  R. Botella-Estrada,et al.  Study of the Immunophenotype of the Inflammatory Cells in Melanomas With Regression and Halo Nevi , 2015, The American Journal of dermatopathology.

[2]  Simon Tavaré,et al.  Autophagy mediates the mitotic senescence transition. , 2009, Genes & development.

[3]  O. C. Stegmaier Natural regression of the melanocytic nevus. , 1959, The Journal of investigative dermatology.

[4]  C. Gross,et al.  County‐level association of melanoma and papillary thyroid cancer: evidence of shared environmental risk? , 2015, Pigment cell & melanoma research.

[5]  J. Larkin,et al.  Combination dabrafenib and trametinib in the management of advanced melanoma with BRAFV600 mutations , 2016, Expert opinion on pharmacotherapy.

[6]  K. Duffy,et al.  The dysplastic nevus: from historical perspective to management in the modern era: part I. Historical, histologic, and clinical aspects. , 2012, Journal of the American Academy of Dermatology.

[7]  Jing Chen,et al.  Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth , 2009, Science Signaling.

[8]  C. Johannessen,et al.  A negative feedback signaling network underlies oncogene-induced senescence. , 2006, Cancer cell.

[9]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .

[10]  D. Peeper,et al.  Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network , 2008, Cell.

[11]  Abraham J. Khorasani,et al.  Loss of 5-Hydroxymethylcytosine Is an Epigenetic Hallmark of Melanoma , 2012, Cell.

[12]  L. Hayflick,et al.  The serial cultivation of human diploid cell strains. , 1961, Experimental cell research.

[13]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[14]  R. Banks Oncogene‐induced cellular senescence elicits an anti‐Warburg effect , 2013, Proteomics.

[15]  Lyndon Su,et al.  Expression of gamma-H2AX in melanocytic lesions. , 2008, Human pathology.

[16]  E. Medrano,et al.  Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi , 2007, Aging cell.

[17]  P. Puigserver,et al.  PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. , 2013, Cancer cell.

[18]  A. Benner,et al.  PTEN/MMAC1 expression in melanoma resection specimens , 2002, British Journal of Cancer.

[19]  K. Flaherty,et al.  Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  F. Silvestris,et al.  miRNAs in melanoma: a defined role in tumor progression and metastasis , 2016, Expert review of clinical immunology.

[21]  R. Parwaresch,et al.  Enhanced expression of Ki-67, topoisomerase IIalpha, PCNA, p53 and p21WAF1/Cip1 reflecting proliferation and repair activity in UV-irradiated melanocytic nevi. , 1998, Human pathology.

[22]  M. Karin,et al.  Immunity, inflammation, and cancer: an eternal fight between good and evil. , 2015, The Journal of clinical investigation.

[23]  R. Sager Senescence as a mode of tumor suppression. , 1991, Environmental health perspectives.

[24]  B. Dumitriu,et al.  Telomere dynamics in mice and humans. , 2013, Seminars in hematology.

[25]  S. Dry,et al.  Changes in size of melanocytic nevi during pregnancy. , 1997, Journal of the American Academy of Dermatology.

[26]  M. Martinka,et al.  eIF4E is an adverse prognostic marker of melanoma patient survival by increasing melanoma cell invasion. , 2015, The Journal of investigative dermatology.

[27]  P. Ms,et al.  PROTECTION AGAINST RUBELLA , 1965 .

[28]  B. Bastian,et al.  From melanocytes to melanomas , 2016, Nature Reviews Cancer.

[29]  N. Hayward,et al.  Cutaneous melanoma susceptibility and progression genes. , 2005, Cancer letters.

[30]  B. Vogelstein,et al.  Variation in cancer risk among tissues can be explained by the number of stem cell divisions , 2015, Science.

[31]  H. Kluger,et al.  Genetic inactivation or pharmacological inhibition of Pdk1 delays development and inhibits metastasis of BrafV600E::Pten−/− melanoma , 2013, Oncogene.

[32]  Blake Ferguson,et al.  A blueprint for staging of murine melanocytic lesions based on the Cdk4 R24C/R24C ::Tyr‐ NRAS Q 61K model , 2012, Experimental dermatology.

[33]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[34]  Xu Dong Zhang,et al.  ER stress‐induced autophagy in melanoma , 2015, Clinical and experimental pharmacology & physiology.

[35]  M. Bosenberg,et al.  DNMT3b Modulates Melanoma Growth by Controlling Levels of mTORC2 Component RICTOR. , 2016, Cell reports.

[36]  P. Tschandl,et al.  Impact of oncogenic BRAF mutations and p16 expression on the growth rate of early melanomas and naevi in vivo , 2016, The British journal of dermatology.

[37]  J. Utikal,et al.  Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases , 2001, British Journal of Cancer.

[38]  Carlos Cordon-Cardo,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2007, Nature.

[39]  O. Larsson,et al.  Expression of Insulin-Like Growth Factor-1 Receptor (IGF-1R) and p27Kip1 in Melanocyte Tumors: A Potential Regulatory Role of IGF-1 Pathway in Distribution of p27Kip1 between Different Cyclins , 2000, Growth factors.

[40]  P. Meltzer,et al.  High frequency of BRAF mutations in nevi , 2003, Nature Genetics.

[41]  D. Wong,et al.  p16INK4a expression is frequently decreased and associated with 9p21 loss of heterozygosity in sporadic melanoma , 1998, Journal of cutaneous pathology.

[42]  Simon Tavaré,et al.  Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes , 2011, Science.

[43]  M. Martinka,et al.  Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[44]  Y. H. Yang,et al.  Reduced p16 and Increased Cyclin D1 and pRb Expression Are Correlated With Progression in Cutaneous Melanocytic Tumors , 2009, International journal of surgical pathology.

[45]  B. Bastian Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer , 2003, Oncogene.

[46]  M. Landthaler,et al.  The absence of BRAF, FGFR3, and PIK3CA mutations differentiates lentigo simplex from melanocytic nevus and solar lentigo. , 2009, The Journal of investigative dermatology.

[47]  P. Boyle,et al.  Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. , 2005, European journal of cancer.

[48]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[49]  Benjamin G. Bitler,et al.  Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. , 2013, Cell reports.

[50]  T. Spector,et al.  Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi , 2009, Nature Genetics.

[51]  W. Mooi,et al.  Oncogene-induced Cellular Senescence , 2010, Advances in anatomic pathology.

[52]  R. MacKie,et al.  The number and distribution of benign pigmented moles (melanocytic naevi) in a healthy British population , 1985, The British journal of dermatology.

[53]  P. Nowell,et al.  Characteristics of cultured human melanocytes isolated from different stages of tumor progression. , 1985, Cancer research.

[54]  A. Brożyna,et al.  The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. , 2014, Archives of biochemistry and biophysics.

[55]  S. Lowe,et al.  p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells , 2013, The Journal of experimental medicine.

[56]  N. Ibrahim,et al.  Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice , 2009, Oncogene.

[57]  S. Lowe,et al.  Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence , 2003, Cell.

[58]  R. Barr Deep penetrating nevus. , 1997, Dermatology online journal.

[59]  R. Scolyer,et al.  BRAF Inhibition Decreases Cellular Glucose Uptake in Melanoma in Association with Reduction in Cell Volume , 2015, Molecular Cancer Therapeutics.

[60]  J. Schaffer Update on melanocytic nevi in children. , 2015, Clinics in dermatology.

[61]  H. Chu,et al.  DNA-methylation profiling distinguishes malignant melanomas from benign nevi , 2011, Pigment cell & melanoma research.

[62]  A. Alimonti,et al.  Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer , 2014, Nature.

[63]  W. Black Residual dysplastic and other nevi in superficial spreading melanoma. Clinical correlations and association with sun damage , 1988, Cancer.

[64]  Stephen B Gruber,et al.  BRAF and NRAS mutations in melanoma and melanocytic nevi , 2006, Melanoma research.

[65]  J. Grichnik,et al.  Early melanoma detection: nonuniform dermoscopic features and growth. , 2003, Journal of the American Academy of Dermatology.

[66]  S. Florell,et al.  A Decade of Melanomas: Identification of Factors Associated with Delayed Detection in an Academic Group Practice , 2011, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[67]  B. Higgins,et al.  BRAFV600E Negatively Regulates the AKT Pathway in Melanoma Cell Lines , 2012, PloS one.

[68]  M. N. Epstein,et al.  A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. , 1984, Human pathology.

[69]  C. Lian,et al.  TET2 Negatively Regulates Nestin Expression in Human Melanoma. , 2016, The American journal of pathology.

[70]  A. Morris,et al.  Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions , 2015, BDJ.

[71]  W. Stolz,et al.  Ultrastructural discrimination between malignant melanomas and benign nevocytic nevi using high-resolution image and multivariate analyses. , 1991, The Journal of investigative dermatology.

[72]  J. Wilmott,et al.  Concordant BRAFV600E mutation status in primary melanomas and associated naevi: implications for mutation testing of primary melanomas , 2014, Pathology.

[73]  Hong Wu,et al.  mTOR is activated in the majority of malignant melanomas. , 2008, The Journal of investigative dermatology.

[74]  K. Brown,et al.  PDK1 and SGK3 Contribute to the Growth of BRAF-Mutant Melanomas and Are Potential Therapeutic Targets. , 2015, Cancer research.

[75]  J. Radhi Malignant Melanoma Arising from Nevi, p53, p16, and Bcl-2: Expression in Benign versus Malignant Components , 1999, Journal of cutaneous medicine and surgery.

[76]  H. Simon,et al.  Down-Regulation of Autophagy-Related Protein 5 (ATG5) Contributes to the Pathogenesis of Early-Stage Cutaneous Melanoma , 2013, Science Translational Medicine.

[77]  M. Held,et al.  A role for the JARID1B stem cell marker for continuous melanoma growth , 2010, Pigment cell & melanoma research.

[78]  H. Kerl,et al.  Proliferation antigens in cutaneous melanocytic tumors--an immunohistochemical study comparing the transferrin receptor and the Ki 67 antigen. , 1989, Dermatologica.

[79]  Hyun-Jeong Leea,et al.  Melanocytic nevus with pregnancy-related changes in size accompanied by apoptosis of nevus cells: A case report , 2000 .

[80]  M. Mytilinaiou,et al.  Heparan sulfate proteoglycans and heparin regulate melanoma cell functions. , 2014, Biochimica et biophysica acta.

[81]  W. Black Residual dysplastic and other nevi in superficial spreading melanoma. Clinical correlations and association with sun damage. , 1989, Cancer.

[82]  Tammie C. Ferringer Update on immunohistochemistry in melanocytic lesions. , 2012, Dermatologic clinics.

[83]  P. Carli,et al.  Eruptive melanocytic nevi in patients with renal allografts: report of 10 cases with dermoscopic findings. , 2003, Journal of the American Academy of Dermatology.

[84]  M. Hussein,et al.  Immunohistological characterisation of tumour infiltrating lymphocytes in melanocytic skin lesions , 2006, Journal of Clinical Pathology.

[85]  J. Campisi,et al.  The senescence-associated secretory phenotype: the dark side of tumor suppression. , 2010, Annual review of pathology.

[86]  G. Mcneer MALIGNANT MELANOMA. , 1965, Surgery, gynecology & obstetrics.

[87]  M. Mihm,et al.  BAP1 and BRAFV600E expression in benign and malignant melanocytic proliferations. , 2015, Human pathology.

[88]  Kelly J. Morris,et al.  A complex secretory program orchestrated by the inflammasome controls paracrine senescence , 2013, Nature Cell Biology.

[89]  L. Chin,et al.  p16(Ink4a) in melanocyte senescence and differentiation. , 2002, Journal of the National Cancer Institute.

[90]  D. Massi,et al.  Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. , 2010, Human pathology.

[91]  Peter Kraft,et al.  Identification of Novel Genetic Markers of Breast Cancer Survival , 2015, Journal of the National Cancer Institute.

[92]  Jianxin Shi,et al.  Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma , 2014, Nature Genetics.

[93]  J. Reis-Filho,et al.  Oncogenic Braf induces melanocyte senescence and melanoma in mice. , 2009, Cancer cell.

[94]  D. Lange,et al.  JARID1B expression in human melanoma and benign melanocytic skin lesions , 2013, Melanoma research.

[95]  V. Klump,et al.  Autophagy in cutaneous malignant melanoma , 2010, Journal of cutaneous pathology.

[96]  S. Leow,et al.  Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. , 2015, The Journal of clinical investigation.

[97]  R. Marais,et al.  Cellular senescence in naevi and immortalisation in melanoma: a role for p16? , 2006, British Journal of Cancer.

[98]  J. Bruijn,et al.  The extracellular matrix in pigmented skin lesions: an immunohistochemical study , 1994, Histopathology.

[99]  D. Bennett,et al.  Isolation, Culture, and Transfection of Melanocytes , 2014, Current protocols in cell biology.

[100]  J. Arrese,et al.  Ipilimumab induces simultaneous regression of melanocytic naevi and melanoma metastases , 2013, Clinical and experimental dermatology.

[101]  Blake Ferguson,et al.  Three‐dimensional modelling for estimation of nevus count and probability of nevus–melanoma progression in a murine model , 2014, Pigment cell & melanoma research.

[102]  H. Simon,et al.  Autophagy suppresses melanoma tumorigenesis by inducing senescence , 2014, Autophagy.

[103]  H. Rui,et al.  Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. , 2016, Cell reports.

[104]  L. Thomas,et al.  Melanoma patients under vemurafenib: prospective follow-up of melanocytic lesions by digital dermoscopy. , 2014, The Journal of investigative dermatology.

[105]  P. Tschandl,et al.  NRAS and BRAF Mutations in Melanoma-Associated Nevi and Uninvolved Nevi , 2013, PloS one.

[106]  L. Cannon-Albright,et al.  Longitudinal assessment of the nevus phenotype in a melanoma kindred. , 2004, The Journal of investigative dermatology.

[107]  Lukas D. Osborne,et al.  HIF1α and HIF2α independently activate SRC to promote melanoma metastases. , 2013, The Journal of clinical investigation.

[108]  J. Cheng,et al.  Deregulated Akt3 Activity Promotes Development of Malignant Melanoma , 2004, Cancer Research.

[109]  A. García‐Díez,et al.  Implication of MT1‐MMP in the maturation steps of benign melanocytic nevi , 2006, Journal of cutaneous pathology.

[110]  A. Hauschild,et al.  Telomerase activity in melanocytic lesions: A potential marker of tumor biology. , 2000, The American journal of pathology.

[111]  James M. Roberts,et al.  Cooperative Regulation of the Cell Division Cycle by the Protein Kinases RAF and AKT , 2004, Molecular and Cellular Biology.

[112]  B. Bastian Hypothesis: a role for telomere crisis in spontaneous regression of melanoma. , 2003, Archives of dermatology.

[113]  R. Fisher,et al.  High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[114]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[115]  R. Camp,et al.  Punctate LC3B Expression Is a Common Feature of Solid Tumors and Associated with Proliferation, Metastasis, and Poor Outcome , 2011, Clinical Cancer Research.

[116]  T. Luedde,et al.  Senescence surveillance of pre-malignant hepatocytes limits liver cancer development , 2011, Nature.

[117]  M. Skolnick,et al.  Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus , 1994, Nature Genetics.

[118]  K. Hou‐Jensen,et al.  The presence of dysplastic nevus remnants in malignant melanomas. A population-based study of 551 malignant melanomas. , 1991, The American Journal of dermatopathology.

[119]  G. Barsh,et al.  Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi , 2010 .

[120]  S. Haferkamp,et al.  Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. , 2009, The Journal of investigative dermatology.

[121]  B. Bastian The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. , 2014, Annual review of pathology.

[122]  S. Sánchez-Sosa,et al.  Immunophenotypic characterization of lymphoid cell infiltrates in vitiligo , 2013, Clinical and experimental immunology.

[123]  M. Hande,et al.  Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions , 2012, The EMBO journal.

[124]  J. Campisi Aging, cellular senescence, and cancer. , 2013, Annual review of physiology.

[125]  T. Steiniche,et al.  In‐situ hybridization‐based quantification of hTR: a possible biomarker in malignant melanoma , 2015, Histopathology.

[126]  I. Yeh,et al.  Clonal BRAF mutations in melanocytic nevi and initiating role of BRAF in melanocytic neoplasia. , 2013, Journal of the National Cancer Institute.

[127]  R. M. Mackie,et al.  Point mutations in the N‐ras oncogene in malignant melanoma and congenital naevi , 1994, The British journal of dermatology.

[128]  J. Shay,et al.  BRAFE600-associated senescence-like cell cycle arrest of human naevi , 2005, Nature.

[129]  J. Taube,et al.  Diagnostic utility of 5‐hydroxymethylcytosine immunohistochemistry in melanocytic proliferations , 2015, Journal of cutaneous pathology.

[130]  M. Nasr,et al.  Comparison of pHH3, Ki-67, and Survivin Immunoreactivity in Benign and Malignant Melanocytic Lesions , 2008, The American Journal of dermatopathology.

[131]  M. Bosenberg,et al.  Epigenetic silencing of novel tumor suppressors in malignant melanoma. , 2006, Cancer research.

[132]  D. Peeper,et al.  The essence of senescence. , 2010, Genes & development.

[133]  D. Jiménez-Gallo,et al.  Eruptive melanocytic nevi in a patient undergoing treatment with sunitinib. , 2013, JAMA dermatology.

[134]  M. Fukayama,et al.  Clonality in nevocellular nevus and melanoma: an expression-based clonality analysis at the X-linked genes by polymerase chain reaction. , 1997, The Journal of investigative dermatology.

[135]  K. Hemminki,et al.  TERT promoter mutations in cancer development. , 2014, Current opinion in genetics & development.

[136]  M. Schultzberg,et al.  Interleukin (IL)-1 alpha- and -1 beta-, IL-6-, and tumor necrosis factor-alpha-like immunoreactivities in human common and dysplastic nevocellular nevi and malignant melanoma. , 1995, The American Journal of dermatopathology.

[137]  B. Bastian The longer your telomeres, the larger your nevus? , 2003, The American Journal of dermatopathology.

[138]  R. Scolyer,et al.  Activation of the extracellular signal regulated kinase (ERK) pathway in human melanoma , 2005, Journal of Clinical Pathology.

[139]  R. Marais,et al.  G12DNRAS and kinase‐dead BRAF cooperate to drive naevogenesis and melanomagenesis , 2014, Pigment cell & melanoma research.

[140]  S. Mannava,et al.  Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence. , 2013, The American journal of pathology.

[141]  Rajiv Kumar,et al.  RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma , 2015, Oncotarget.

[142]  Matthew J. Davis,et al.  Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma , 2012, Nature Genetics.

[143]  Rugang Zhang,et al.  Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. , 2011, Molecular cell.

[144]  S. Ryeom,et al.  Detection of Oncogene-Induced Senescence In Vivo. , 2017, Methods in molecular biology.

[145]  P. Nelson,et al.  MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation , 2015, Nature Cell Biology.

[146]  E. Hersh,et al.  Active immunotherapy with B.C.G. for recurrent malignant melanoma. , 1973, Lancet.

[147]  L. Hayflick THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. , 1965, Experimental cell research.

[148]  Jun S. Song,et al.  Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. , 2013, Cancer cell.

[149]  M. Stratton,et al.  High burden and pervasive positive selection of somatic mutations in normal human skin , 2015, Science.

[150]  Pietro Rubegni,et al.  Melanocytic skin lesions and pregnancy: digital dermoscopy analysis , 2007, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[151]  K. Duffy,et al.  The dysplastic nevus: from historical perspective to management in the modern era: part II. Molecular aspects and clinical management. , 2012, Journal of the American Academy of Dermatology.

[152]  M. Schultzberg,et al.  Interleukin (IL)-1α- and -1β-, IL-6-, and Tumor Necrosis Factor-α-like Immunoreactivities in Human Common and Dysplastic Nevocellular Nevi and Malignant Melanoma , 1995 .

[153]  S. Haferkamp,et al.  IGFBP7 Is Not Required for B-RAF-Induced Melanocyte Senescence , 2010, Cell.

[154]  T. Giordano,et al.  C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells , 2008, Oncogene.

[155]  T. Papp,et al.  Mutational analysis of the BRAF gene in human congenital and dysplastic melanocytic naevi , 2005, Melanoma research.

[156]  Sameer Gupta,et al.  Genetics of melanocytic nevi , 2015, Pigment cell & melanoma research.

[157]  Jashin J. Wu,et al.  Melanoma in patients with chronic lymphocytic leukemia and non-Hodgkin lymphoma. , 2015, Journal of the American Academy of Dermatology.

[158]  Jeffrey E. Lee,et al.  Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3 , 2011, Nature Genetics.

[159]  J. Sedivy,et al.  Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts. , 1999, Cancer research.

[160]  R. Sager,et al.  Suppression of tumor growth by senescence in virally transformed human fibroblasts. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[161]  R. Sturm,et al.  BRAFV600E mutation status of involuting and stable nevi in dabrafenib therapy with or without trametinib. , 2014, JAMA dermatology.

[162]  T. Brenn,et al.  Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors , 2012, British Journal of Cancer.

[163]  S. Florell,et al.  Comparative Analysis of Total Body and Dermatoscopic Photographic Monitoring of Nevi in Similar Patient Populations at Risk for Cutaneous Melanoma , 2010, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[164]  Z. Kefalopoulou,et al.  Epigenetic Modifications in Cutaneous Malignant Melanoma: EZH2, H3K4me2, and H3K27me3 Immunohistochemical Expression is Enhanced at the Invasion Front of the Tumor , 2015, The American Journal of dermatopathology.

[165]  B. Garcia,et al.  The histone variant macroH2A suppresses melanoma progression through regulation of CDK8 , 2010, Nature.

[166]  G. Wahl,et al.  DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. , 1994, Genes & development.

[167]  Y. Maida,et al.  Telomerase reverse transcriptase moonlights: Therapeutic targets beyond telomerase , 2015, Cancer science.

[168]  D. DiMaio,et al.  Senescence‐associated β‐galactosidase is lysosomal β‐galactosidase , 2006 .

[169]  J. S. Pedersen,et al.  The lncRNA MIR31HG regulates p16INK4A expression to modulate senescence , 2015, Nature Communications.

[170]  C. Garbe,et al.  Increase of melanocytic nevus counts in children during 5 years of follow-up and analysis of associated factors. , 1996, Archives of dermatology.

[171]  R. Dummer,et al.  The Genetic Evolution of Melanoma from Precursor Lesions. , 2015, The New England journal of medicine.

[172]  W. Goggins,et al.  The transformation rate of moles (melanocytic nevi) into cutaneous melanoma: a population-based estimate. , 2003, Archives of dermatology.

[173]  J. Weber,et al.  ARF tumor suppression in the nucleolus. , 2014, Biochimica et biophysica acta.

[174]  Dimitris Kletsas,et al.  Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints , 2006, Nature.

[175]  S. Lowe,et al.  Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. , 1998, Genes & development.

[176]  Michael R. Green,et al.  Role for IGFBP7 in Senescence Induction by BRAF , 2010, Cell.

[177]  Y. Moroi,et al.  Expression of c-Kit, p-ERK and cyclin D1 in malignant melanoma: an immunohistochemical study and analysis of prognostic value. , 2011, Journal of dermatological science.

[178]  R. Bergman,et al.  Apoptosis, Fas and Fas‐ligand expression in melanocytic tumors , 1999, Journal of cutaneous pathology.

[179]  F. Haluska,et al.  Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. , 2004, The Journal of investigative dermatology.

[180]  T. Spector,et al.  Nevus Size and Number Are Associated with Telomere Length and Represent Potential Markers of a Decreased Senescence In vivo , 2007, Cancer Epidemiology Biomarkers & Prevention.

[181]  S. Keyse,et al.  The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs) , 2016, Seminars in cell & developmental biology.

[182]  J. A. Bishop,et al.  Genotype/phenotype and penetrance studies in melanoma families with germline CDKN2A mutations. , 2000, The Journal of investigative dermatology.

[183]  M. Tronnier,et al.  One single erythemagenic UV irradiation is more effective in increasing the proliferative activity of melanocytes in melanocytic naevi compared with fractionally applied high doses , 1997, The British journal of dermatology.

[184]  C. Dang,et al.  MYC, Metabolism, and Cancer. , 2015, Cancer discovery.

[185]  R. Kitsis,et al.  MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. , 2015, Molecular cell.

[186]  M. Herlyn,et al.  Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. , 2014, The Journal of clinical investigation.

[187]  P. Sorensen,et al.  IGFBP7 Binds to the IGF-1 Receptor and Blocks Its Activation by Insulin-Like Growth Factors , 2012, Science Signaling.

[188]  Thomas M. Keane,et al.  POT1 loss-of-function variants predispose to familial melanoma , 2014, Nature Genetics.

[189]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[190]  G. Robertson,et al.  Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. , 2008, Cancer research.

[191]  C. Harley,et al.  Telomeres shorten during ageing of human fibroblasts , 1990, Nature.

[192]  A. Emley,et al.  RAS and RAF mutations in banal melanocytic aggregates contiguous with primary cutaneous melanoma: clues to melanomagenesis , 2009, The British journal of dermatology.

[193]  R. DePinho,et al.  BRafV600E cooperates with Pten silencing to elicit metastatic melanoma , 2009, Nature Genetics.

[194]  R. Stern,et al.  Incidence of skin cancer in 5356 patients following organ transplantation , 2000, The British journal of dermatology.

[195]  G. Mollica,et al.  Are Melanocytic Nevi Influenced by Pregnancy? A Dermoscopic Evaluation , 2006, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[196]  J. Slingerland,et al.  Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. , 1995, Oncogene.

[197]  P. Dhawan,et al.  Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. , 2002, Cancer research.

[198]  S. Menzies,et al.  Variables predicting change in benign melanocytic nevi undergoing short-term dermoscopic imaging. , 2011, Archives of dermatology.

[199]  C. Grin,et al.  The immune response in halo nevi. , 1997, Journal of the American Academy of Dermatology.

[200]  A. Elefanty,et al.  Human acquired naevi are clonal , 1998, Melanoma research.

[201]  A. Zwinderman,et al.  Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[202]  C. Harley,et al.  Extension of life-span by introduction of telomerase into normal human cells. , 1998, Science.

[203]  J. Campisi,et al.  Replicative Senescence: An Old Lives' Tale? , 1996, Cell.

[204]  G. Annessi,et al.  Correlation between clinical atypia and histologic dysplasia in acquired melanocytic nevi. , 2001, Journal of the American Academy of Dermatology.

[205]  C. Garbe,et al.  Acquired melanocytic nevi as risk factor for melanoma development. A comprehensive review of epidemiological data. , 2003, Pigment cell research.

[206]  The developing story of Sprouty and cancer , 2014, Cancer and Metastasis Reviews.

[207]  S. Mocellin,et al.  Interferon alpha for the adjuvant treatment of cutaneous melanoma. , 2013, The Cochrane database of systematic reviews.

[208]  C. Lengner,et al.  DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function. , 2015, Cell reports.

[209]  M. Saroufim,et al.  Predictors of BRAF Mutation in Melanocytic Nevi: Analysis Across Regions With Different UV Radiation Exposure , 2013, The American Journal of dermatopathology.

[210]  S. Gruber,et al.  Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway , 2006, Nature Cell Biology.

[211]  P. Uribe,et al.  Lack of association between BRAF mutation and MAPK ERK activation in melanocytic nevi. , 2006, The Journal of investigative dermatology.

[212]  P. Soares,et al.  Overexpression of pyruvate dehydrogenase kinase supports dichloroacetate as a candidate for cutaneous melanoma therapy , 2015, Expert opinion on therapeutic targets.

[213]  S. J. Lee,et al.  Melanocytic nevus with pregnancy-related changes in size accompanied by apoptosis of nevus cells: a case report. , 2000, Journal of the American Academy of Dermatology.

[214]  P. Mischel,et al.  mTORC2 in the center of cancer metabolic reprogramming , 2014, Trends in Endocrinology & Metabolism.

[215]  D. English,et al.  Ultraviolet Radiation at Places of Residence and the Development of Melanocytic Nevi in Children (Australia) , 2006, Cancer Causes & Control.

[216]  Thomas M. Keane,et al.  Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. , 2015, Journal of the National Cancer Institute.

[217]  D. Peeper,et al.  BRAFE600 in benign and malignant human tumours , 2008, Oncogene.

[218]  S. Arron,et al.  Melanoma risk and survival among organ transplant recipients , 2015, The Journal of investigative dermatology.

[219]  H. Kittler,et al.  Frequency and characteristics of enlarging common melanocytic nevi. , 2000, Archives of Dermatology.

[220]  P. A. Pérez-Mancera,et al.  Inside and out: the activities of senescence in cancer , 2014, Nature Reviews Cancer.

[221]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[222]  F. Trautinger,et al.  Prevalence of actinic keratosis among dermatology outpatients in Austria , 2014, The British journal of dermatology.

[223]  P. Guldberg,et al.  Molecular drivers of cellular metabolic reprogramming in melanoma. , 2015, Trends in molecular medicine.

[224]  Sikandar G. Khan,et al.  High frequency of PTEN mutations in nevi and melanomas from xeroderma pigmentosum patients , 2014, Pigment cell & melanoma research.

[225]  S. Tahan,et al.  Melanocytic nevi in pregnancy: histologic features and Ki‐67 proliferation index , 2009, Journal of cutaneous pathology.

[226]  Peter D. Adams,et al.  Lysosome-mediated processing of chromatin in senescence , 2013, The Journal of cell biology.

[227]  J. Fridlyand,et al.  Distinct sets of genetic alterations in melanoma. , 2005, The New England journal of medicine.

[228]  Dritan Liko,et al.  mTOR in health and in sickness , 2015, Journal of Molecular Medicine.

[229]  A. Perkins,et al.  Assessment of clonality in melanocytic nevi , 2001, Journal of cutaneous pathology.

[230]  S. Puig,et al.  Nevus-associated melanomas: clinicopathologic features. , 2014, American journal of clinical pathology.

[231]  D. Sabatini,et al.  Cancer cell metabolism: one hallmark, many faces. , 2012, Cancer discovery.

[232]  A. Enk,et al.  RASSF10 promoter hypermethylation is frequent in malignant melanoma of the skin but uncommon in nevus cell nevi. , 2012, The Journal of investigative dermatology.

[233]  P. Ascierto,et al.  Melanoma: From Incurable Beast to a Curable Bet. The Success of Immunotherapy , 2015, Front. Oncol..

[234]  J. Cerhan,et al.  Increased incidence of malignant melanoma and other rare cutaneous cancers in the setting of chronic lymphocytic leukemia , 2015, International journal of dermatology.

[235]  J. Bouwes Bavinck,et al.  Melanoma in Organ Transplant Recipients: Clinicopathological Features and Outcome in 100 Cases , 2008, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[236]  P. Vogt,et al.  Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence , 2012, Cell cycle.

[237]  M. Skolnick,et al.  Inheritance of nevus number and size in melanoma and dysplastic nevus syndrome kindreds. , 1991, Journal of the National Cancer Institute.

[238]  E. Yang,et al.  The intersection between DNA damage response and cell death pathways. , 2012, Experimental oncology.

[239]  N. Carter,et al.  A DNA damage checkpoint response in telomere-initiated senescence , 2003, Nature.

[240]  S. Haferkamp,et al.  Absence of distinguishing senescence traits in human melanocytic nevi. , 2012, The Journal of investigative dermatology.

[241]  M. Mihm,et al.  Recurrent nevus phenomenon: a clinicopathologic study of 357 cases and histologic comparison with melanoma with regression , 2009, Modern Pathology.

[242]  R. Curran,et al.  The ultrastructure of benign pigmented naevi and melanocarcinomas in man , 1976, The Journal of pathology.

[243]  L. Zon,et al.  BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma , 2005, Current Biology.

[244]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[245]  Alexander Roesch,et al.  A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth , 2010, Cell.

[246]  J. Kirkwood,et al.  Association of TERT promoter mutations with telomerase expression in melanoma , 2016, Pigment cell & melanoma research.

[247]  E. Simpson,et al.  p53: Protection against Tumor Growth beyond Effects on Cell Cycle and Apoptosis. , 2015, Cancer research.

[248]  P. Helmbold,et al.  Claudin11 Promoter Hypermethylation Is Frequent in Malignant Melanoma of the Skin, but Uncommon in Nevus Cell Nevi , 2015, Cancers.

[249]  D. DiMaio,et al.  Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. , 2006, Aging cell.

[250]  P. Romero,et al.  C O M M E N T a R Y Open Access , 2022 .

[251]  S. Pathak,et al.  Spontaneous regression of cutaneous melanoma in sinclair swine is associated with defective telomerase activity and extensive telomere erosion. , 2000, International journal of oncology.

[252]  D. Morton,et al.  Immunological factors which influence response to immunotherapy in malignant melanoma. , 1970, Surgery.

[253]  R. Sears,et al.  Diminished WNT → β-catenin → c-MYC signaling is a barrier for malignant progression of BRAFV600E-induced lung tumors , 2014, Genes & development.

[254]  H. Horlings,et al.  Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. , 2012, Genes & development.

[255]  D. Rimm,et al.  β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. , 2011, Cancer cell.

[256]  G. Feldman,et al.  The macrophage: Switches from a passenger to a driver during anticancer therapy , 2015, Oncoimmunology.

[257]  P. Puigserver,et al.  Cyclin D1-CDK4 Controls Glucose Metabolism Independently of Cell Cycle Progression , 2014, Nature.

[258]  W. Clark,et al.  Growth and phenotypic characteristics of human nevus cells in culture. , 1988, The Journal of investigative dermatology.

[259]  J. Malvehy,et al.  Mutational status of naevus‐associated melanomas , 2015, The British journal of dermatology.

[260]  J. J. van den Oord,et al.  Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma. , 2001, The Journal of investigative dermatology.

[261]  W. Goggins,et al.  Cutaneous melanomas associated with nevi. , 2003, Archives of dermatology.

[262]  N. Hayward,et al.  Nuclear PTEN expression and clinicopathologic features in a population‐based series of primary cutaneous melanoma , 2002, International journal of cancer.

[263]  M. Mihm,et al.  Histologic regression in malignant melanoma: an interobserver concordance study , 1993, Journal of cutaneous pathology.

[264]  K. Drzewiecki,et al.  Spontaneous regression of metastases from melanoma: review of the literature , 2009, Melanoma research.

[265]  J. Metcalf,et al.  Blue nevus and "malignant blue nevus:" A concise review. , 2016, Seminars in diagnostic pathology.

[266]  C. Abbadie,et al.  The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. , 2015, American journal of physiology. Cell physiology.

[267]  J. Goeman,et al.  Promoter CpG island hypermethylation in dysplastic nevus and melanoma: CLDN11 as an epigenetic biomarker for malignancy. , 2014, The Journal of investigative dermatology.

[268]  M. Esteller,et al.  Aberrant epigenetic landscape in cancer: how cellular identity goes awry. , 2010, Developmental cell.

[269]  R. Mohney,et al.  Oncogene-induced senescence results in marked metabolic and bioenergetic alterations , 2012, Cell cycle.

[270]  P. Aronson,et al.  Sorafenib induced eruptive melanocytic lesions. , 2013, Dermatology online journal.

[271]  Aaron Bensimon,et al.  Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication , 2006, Nature.

[272]  D. Elder,et al.  TIA-1 Positive Tumor-Infiltrating Lymphocytes in Nevi and Melanomas , 2000, Modern Pathology.

[273]  A. Lund,et al.  Emerging roles of lncRNAs in senescence , 2016, The FEBS journal.

[274]  R. Sagebiel,et al.  Melanocytic nevi in histologic association with primary cutaneous melanoma of superficial spreading and nodular types: effect of tumor thickness. , 1993, The Journal of investigative dermatology.

[275]  W. Stolz,et al.  Increase in telomerase activity during progression of melanocytic cells from melanocytic naevi to malignant melanomas , 1999, Archives of Dermatological Research.

[276]  Clara Correia-Melo,et al.  Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence , 2012, Nature Communications.

[277]  Y. Collan,et al.  Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage , 1997, International journal of cancer.

[278]  Raymond L. Barnhill,et al.  Pathology of melanocytic nevi and melanoma , 2014 .

[279]  H. Kutzner,et al.  Frequent Mitotic Activity in Banal Melanocytic Nevi Uncovered by Immunohistochemical Analysis , 2010, The American Journal of dermatopathology.

[280]  N. Bardeesy,et al.  mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation. , 2015, Cancer cell.

[281]  M. Mihm,et al.  Dysplastic melanocytic nevi in histologic association with 234 primary cutaneous melanomas. , 1983, Journal of the American Academy of Dermatology.

[282]  R. Taub,et al.  B.C.G. in malignant melanoma. , 1973, The Lancet.

[283]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[284]  M. Skolnick,et al.  Histopathologic characteristics of dysplastic nevi. Limited association of conventional histologic criteria with melanoma risk group. , 1990, Journal of the American Academy of Dermatology.

[285]  K. Isselbacher,et al.  Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[286]  Dimitris Kletsas,et al.  Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions , 2005, Nature.

[287]  Y. Shyr,et al.  Expression of activated Akt in benign nevi, Spitz nevi and melanomas , 2007, Journal of cutaneous pathology.

[288]  T. Shlomi,et al.  A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence , 2013, Nature.

[289]  K. Brown,et al.  Germline TERT promoter mutations are rare in familial melanoma , 2015, Familial Cancer.

[290]  C. Eng,et al.  Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. , 2000, The American journal of pathology.

[291]  Michael P Schön,et al.  Association of Patient Risk Factors and Frequency of Nevus-Associated Cutaneous Melanomas. , 2016, JAMA dermatology.

[292]  F. D. D. Fagagna,et al.  Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation , 2012, Nature Cell Biology.

[293]  L. Zender,et al.  mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype , 2015, Nature Cell Biology.

[294]  M. Fimiani,et al.  Quantitative in situ evaluation of telomeres in fluorescence in situ hybridization‐processed sections of cutaneous melanocytic lesions and correlation with telomerase activity , 2002, The British journal of dermatology.

[295]  B. Kerem,et al.  Nucleotide Deficiency Promotes Genomic Instability in Early Stages of Cancer Development , 2011, Cell.

[296]  M. Mihm,et al.  PTEN expression in normal skin, acquired melanocytic nevi, and cutaneous melanoma. , 2003, Journal of the American Academy of Dermatology.

[297]  M. Saroufim,et al.  BRAF Analysis on a Spectrum of Melanocytic Neoplasms: An Epidemiological Study Across Differing UV Regions , 2014, The American Journal of dermatopathology.

[298]  H. Soyer,et al.  BRAF wild-type melanoma in situ arising in a BRAF V600E mutant dysplastic nevus. , 2015, JAMA dermatology.

[299]  Sebastian Moran,et al.  Epigenetic mechanisms involved in melanoma pathogenesis and chemoresistance. , 2015, Annals of translational medicine.

[300]  R. Newbold,et al.  Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene , 1983, Nature.

[301]  D. Rimm,et al.  Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. , 1999, The American journal of pathology.

[302]  William M. Lin,et al.  Outcome of patients with de novo versus nevus-associated melanoma. , 2015, Journal of the American Academy of Dermatology.

[303]  R. Brodell,et al.  The natural history of halo nevi: a retrospective case series. , 2012, Journal of the American Academy of Dermatology.

[304]  M. Arumí-Uría,et al.  Grading of Atypia in Nevi: Correlation with Melanoma Risk , 2003, Modern Pathology.

[305]  I. Zalaudek,et al.  Spitz nevus, Spitz tumor, and spitzoid melanoma: a comprehensive clinicopathologic overview. , 2013, Dermatologia clinica.

[306]  A. Mantovani,et al.  Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. , 2007, The Journal of investigative dermatology.

[307]  E. Papakonstanti,et al.  Focus on PTEN Regulation , 2015, Front. Oncol..

[308]  J. Shay,et al.  Progressive increase in telomerase activity from benign melanocytic conditions to malignant melanoma. , 1999, Neoplasia.

[309]  N. Hayward,et al.  Genetics of familial melanoma: 20 years after CDKN2A , 2015, Pigment cell & melanoma research.

[310]  Douglas Hanahan,et al.  Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment Prospects and Obstacles for Therapeutic Targeting of Function-enabling Stromal Cell Types , 2022 .

[311]  S. Florell,et al.  Proliferation, apoptosis, and survivin expression in a spectrum of melanocytic nevi , 2005, Journal of cutaneous pathology.

[312]  K. Flaherty,et al.  Promoter Methylation of PTEN Is a Significant Prognostic Factor in Melanoma Survival. , 2016, The Journal of investigative dermatology.

[313]  C. Burd,et al.  The Molecular Balancing Act of p16INK4a in Cancer and Aging , 2013, Molecular Cancer Research.

[314]  H. Kerl,et al.  Melanoma ex naevo: a study of the associated naevus , 2003, Melanoma research.

[315]  M. Bosenberg,et al.  Melanoma metastasis: new concepts and evolving paradigms , 2014, Oncogene.

[316]  R. Scolyer,et al.  Expression of glucose‐regulated stress protein GRP78 is related to progression of melanoma , 2009, Histopathology.

[317]  D. Pinkel,et al.  Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. , 2000, The American journal of pathology.

[318]  M. Tetzlaff,et al.  Loss of microRNA-205 expression is associated with melanoma progression , 2012, Laboratory Investigation.

[319]  C. Shea,et al.  The recurrent nevus phenomenon: a history of challenge, controversy, and discovery. , 2011, Archives of pathology & laboratory medicine.

[320]  M. Bergo,et al.  Oncogene-induced senescence underlies the mutual exclusive nature of oncogenic KRAS and BRAF , 2016, Oncogene.

[321]  Bonnie L. Balzer,et al.  Nevic Mitoses: A Review of 1041 Cases , 2013, The American Journal of dermatopathology.

[322]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[323]  J. Magaud,et al.  Association of increased autophagic inclusions labeled for β-galactosidase with fibroblastic aging , 2003, Experimental Gerontology.

[324]  M. Askarian-Amiri,et al.  Epigenetic regulation in human melanoma: past and future , 2015, Epigenetics.

[325]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[326]  N. Dhomen,et al.  Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53 , 2014, Nature.

[327]  R. Newbold,et al.  Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens , 1982, Nature.

[328]  Amy Y. M. Au,et al.  p53 status determines the role of autophagy in pancreatic tumour development , 2013, Nature.

[329]  W. Clark,et al.  Biology of tumor progression in human melanocytes. , 1987, Laboratory investigation; a journal of technical methods and pathology.

[330]  Michael R. Green,et al.  Oncogenic BRAF Induces Senescence and Apoptosis through Pathways Mediated by the Secreted Protein IGFBP7 , 2008, Cell.

[331]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.