State Space Reductions for Alternating Büchi Automata Quotienting by Simulation Equivalences

Quotienting by simulation equivalences is a well-established technique for reducing the size of nondeterministic Büchi automata. We adapt this technique to alternating Büchi automata. To this end we suggest two new quotients, namely minimax and semi-elective quotients, prove that they preserve the recognized languages, and show that computing them is not more difficult than computing quotients for nondeterministic Büchi automata. We explain the merits of of our quotienting procedures with respect to converting alternating Büchi automata into nondeterministic ones.

[1]  Moshe Y. Vardi Nontraditional Applications of Automata Theory , 1994, TACS.

[2]  Alan J. Hu,et al.  Checking for Language Inclusion Using Simulation Preorders , 1991, CAV.

[3]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[4]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[5]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[6]  Thomas Noll,et al.  Truth/SLC - A Parallel Verification Platform for Concurrent Systems , 2001, CAV.

[7]  Fabio Somenzi,et al.  Fair Simulation Minimization , 2002, CAV.

[8]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[9]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[10]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[11]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[12]  Fausto Giunchiglia,et al.  Improved Automata Generation for Linear Temporal Logic , 1999, CAV.

[13]  Thomas A. Henzinger,et al.  Computing simulations on finite and infinite graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[14]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[15]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[16]  Kousha Etessami,et al.  A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.

[17]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[18]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[19]  Kousha Etessami,et al.  Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata , 2001, ICALP.

[20]  Thomas A. Henzinger,et al.  Fair Bisimulation , 2000, TACAS.

[21]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[22]  David E. Muller,et al.  Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[23]  Orna Grumberg,et al.  Checking for fair simulation in models with B uchi fairness constraints , 2000 .

[24]  Thomas A. Henzinger,et al.  Fair Simulation , 1997, Inf. Comput..

[25]  Marcin Jurdzinski,et al.  Small Progress Measures for Solving Parity Games , 2000, STACS.

[26]  Robin Milner,et al.  An Algebraic Definition of Simulation Between Programs , 1971, IJCAI.

[27]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[28]  E. Allen Emerson,et al.  The Complexity of Tree Automata and Logics of Programs , 1999, SIAM J. Comput..