Retrieval of atmospheric CH4 profiles from Fourier transform infrared data using dimension reduction and MCMC

We introduce an inversion method that uses dimension reduction for the retrieval of atmospheric methane (CH4) profiles. Uncertainty analysis is performed using the Markov chain Monte Carlo (MCMC) statistical estimation. These techniques are used to retrieve CH4 profiles from the ground-based spectral measurements by the Fourier Transform Spectrometer (FTS) instrument at Sodankyla (67.4 degrees N, 26.6 degrees E), Northern Finland. The Sodankyla FTS is part of the Total Carbon Column Observing Network (TCCON), a global network that observes solar spectra in near-infrared wavelengths. The high spectral resolution of the data provides approximately 3 degrees of freedom about the vertical structure of CH4 between around 0 and 40km. We reduce the dimension of the inverse problem by using principal component analysis. Smooth and realistic profiles are sought by estimating three parameters for the profile shape. We use Bayesian framework with adaptive MCMC to better characterize the full posterior distribution of the solution and uncertainties related to the retrieval. The retrieved profiles are validated against in situ AirCore soundings which provide an accurate reference up to 20-30km. The method is presented in a general form, so that it can easily be adapted for other applications, such as different trace gases or satellite-borne measurements where more accurate profile information and better analysis of the uncertainties would be highly valuable.

[1]  Xiong Liu,et al.  Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application , 2010 .

[2]  Reinhard Beer,et al.  TES on the aura mission: scientific objectives, measurements, and analysis overview , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Peter Bergamaschi,et al.  Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH 4 and impact of calibration improvements on CO 2 retrieval , 2006 .

[4]  Filipe Aires,et al.  Remote sensing from the infrared atmospheric sounding interferometer instrument 2. Simultaneous retrieval of temperature, water vapor, and ozone atmospheric profiles , 2002 .

[5]  Tiangang Cui,et al.  Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.

[6]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[7]  T. Clarmann,et al.  MIPAS: an instrument for atmospheric and climate research , 2007 .

[8]  V. Malathy Devi,et al.  Temperature dependences for air-broadened Lorentz half-width and pressure shift coefficients in the 30013/00001 and 30012/00001 bands of CO 2 near 1600 nm 1 , 2009 .

[9]  Hartmut Boesch,et al.  The greenhouse gas climate change initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON , 2013 .

[10]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) , 1998, Defense, Security, and Sensing.

[11]  Heinrich Bovensmann,et al.  SCIAMACHY - Exploring the Changing Earth's Atmosphere , 2011 .

[12]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[13]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[14]  Colm Sweeney,et al.  AirCore: An Innovative Atmospheric Sampling System , 2010 .

[15]  C. Frankenberg,et al.  Profiling tropospheric CO 2 using Aura TES and TCCON instruments , 2012 .

[16]  Pauli Heikkinen,et al.  Fourier transform spectrometer measurements of column CO 2 at Sodankylä, Finland , 2016 .

[17]  Guy P. Brasseur,et al.  Aeronomy of the Middle Atmosphere , 2009 .

[18]  Filipe Aires,et al.  Remote sensing from the infrared atmospheric sounding interferometer instrument 1. Compression, denoising, and first-guess retrieval algorithms , 2002 .

[19]  Akihiko Kuze,et al.  Toward accurate CO_2 and CH_4 observations from GOSAT , 2011 .

[20]  Laurence S. Rothman,et al.  Total internal partition sums to support planetary remote sensing , 2011 .

[21]  V. M. Devi,et al.  The 2009 edition of the GEISA spectroscopic database , 2011 .

[22]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[23]  Peter Bergamaschi,et al.  Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability , 2011 .

[24]  Justus Notholt,et al.  The Total Carbon Column Observing Network , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Tropospheric CH 4 signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements , 2014 .

[26]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[27]  T. R. Shippert,et al.  Observational determination of surface radiative forcing by CO2 from 2000 to 2010 , 2015, Nature.

[28]  F. Hasea,et al.  Intercomparison of retrieval codes used for the analysis of high-resolution , ground-based FTIR measurements , 2004 .

[29]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  Yuk L. Yung,et al.  Vertically constrained CO2 retrievals from TCCON measurements , 2012 .

[31]  L. Brown,et al.  Fourier transform infrared spectroscopy measurements of H2O-broadened half-widths of CO2 at 4.3 μmThis article is part of a Special Issue on Spectroscopy at the University of New Brunswick in honour of Colan Linton and Ron Lees. , 2009 .

[32]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[33]  Peter F. Bernath,et al.  Atmospheric chemistry experiment (ACE): mission overview , 2004, SPIE Optics + Photonics.

[34]  Tiangang Cui,et al.  On dimension reduction in Gaussian filters , 2015, 1508.06452.

[35]  V. Malathy Devi,et al.  Line mixing and speed dependence in CO2 at 6227.9 cm−1: Constrained multispectrum analysis of intensities and line shapes in the 30013 ← 00001 band , 2007 .

[36]  Carmine Serio,et al.  Inversion for atmospheric thermodynamical parameters of IASI data in the principal components space , 2012 .

[37]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations , 2011 .

[38]  Maximilian Reuter,et al.  Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY , 2010 .

[39]  Tatsuya Yokota,et al.  Retrieval algorithm for CO 2 and CH 4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite , 2010 .

[40]  J. Tamminen,et al.  Bayesian solution for nonlinear and non‐Gaussian inverse problems by Markov chain Monte Carlo method , 2001 .

[41]  Marko Laine,et al.  Aerosol model selection and uncertainty modelling by adaptive MCMC technique , 2008 .

[42]  P. Heikkinen,et al.  FTS measurements of column CO 2 at Sodankylä , 2016 .

[43]  B. Connor,et al.  Intercomparison of remote sounding instruments , 1999 .

[44]  J. Burrows,et al.  Information operator approach and iterative regularization methods for atmospheric remote sensing , 2007 .

[45]  Akihiko Kuze,et al.  Toward accurate CO2 and CH4 observations from GOSAT , 2011 .

[46]  H. Haario,et al.  Markov chain Monte Carlo methods for high dimensional inversion in remote sensing , 2004 .

[47]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[48]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .